We conducted a quantitative and qualitative chemical analysis of cane toad bufadienolides--the cardioactive steroids that are believed to be the principal cane toad toxins. We found complex shifts in toxin composition through toad ontogeny: (1) eggs contain at least 28 dominant bufadienolides, 17 of which are not detected in any other ontogenetic stage; (2) tadpoles present a simpler chemical profile with two to eight dominant bufadienolides; and (3) toxin diversity decreases during tadpole life but increases again after metamorphosis (larger metamorph/juvenile toads display five major bufadienolides). Total bufadienolide concentrations are highest in eggs (2.64 +/- 0.56 micromol/mg), decreasing during tadpole life stages (0.084 +/- 0.060 micromol/mg) before rising again after metamorphosis (2.35 +/- 0.45 micromol/mg). These variations in total bufadienolide levels correlate with toxicity to Australian frog species. For example, consumption of cane toad eggs killed tadpoles of two Australian frog species (Limnodynastes convexiusculus and Litoria rothii), whereas no tadpoles died after consuming late-stage cane toad tadpoles or small metamorphs. The high toxicity of toad eggs reflects components in the egg itself, not the surrounding jelly coat. Our results suggest a dramatic ontogenetic shift in the danger that toads pose to native predators, reflecting rapid changes in the types and amounts of toxins during toad development.
Summary1. In many anuran species, larvae modify their developmental trajectories and behaviour in response to chemical cues that predict predator risk. Recent reviews highlight a dearth of studies on delayed (post-metamorphic) consequences of larval experience. 2. We raised cane toad ( Bufo marinus ) tadpoles either under control conditions or in the presence of non-lethal predator cues (crushed conspecifics). 3. Exposure to these chemical cues massively reduced size at metamorphosis, as predicted by theory. Parotoid glands were larger relative to body size in post-metamorphic animals from the experimental treatment, suggesting higher investment in chemical defences. 4. Exposure to chemical cues from crushed conspecifics during larval life reduced total bufadienolide content of metamorphs, but increased amounts of one specific bufadienolide (bufalin). 5. Hence, cane toads respond to perceived predation risk in the aquatic environment by metamorphosing at a smaller size and modifying their investment in defensive toxins during post-metamorphic life. 6. Phenotypically flexible responses to larval conditions vary among amphibian taxa, and can involve significant carry-over effects into post-metamorphic life.
Spawning sites are a critical and often scarce resource for aquatic-breeding amphibians, including invasive species such as the cane toad (Bufo marinus). If toads select spawning sites based on habitat characteristics, we can potentially manipulate those characteristics to either enhance or reduce their suitability as breeding sites. We surveyed 25 spawning sites used by cane toads, and 25 adjacent unused sites, in an area of tropical Australia recently invaded by these feral anurans. Water chemistry (pH, conductivity, salinity, turbidity) was virtually identical between the two sets of waterbodies, but habitat characteristics were very different. Toads selectively oviposited in shallow pools with gradual rather than steep slopes, and with open (unvegetated) gradually sloping muddy banks. They avoided flowing water, and pools with steep surrounds. In these respects, cane toads broadly resemble previously studied toad species in other parts of the world, as well as conspecifics within their natural range in South America.
Successful protection of biodiversity requires increased understanding of the ecological characteristics that predispose some species to endangerment. Theory posits that species with polymorphic or variable coloration should have larger distributions, use more diverse resources, and be less vulnerable to population declines and extinctions, compared with taxa that do not vary in color. We used information from literature on 194 species of Australian frogs to search for associations of coloration mode with ecological variables. In general, species with variable or polymorphic color patterns had larger ranges, used more habitats, were less prone to have a negative population trend, and were estimated as less vulnerable to extinction compared with nonvariable species. An association of variable coloration with lower endangerment was also evident when we controlled statistically for the effects of range size. Nonvariable coloration was not a strong predictor of endangerment, and information on several characteristics is needed to reliably identify and protect species that are prone to decline and may become threatened by extinction in the near future. Analyses based on phylogenetic-independent contrasts did not support the hypothesis that evolutionary transitions between nonvariable and variable or polymorphic coloration have been accompanied by changes in the ecological variables we examined. Irrefutable demonstration of a role of color pattern variation in amphibian decline and in the dynamics and persistence of populations in general will require a manipulative experimental approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.