BackgroundLight microscopy and antigen-based rapid diagnostic tests are the primary diagnostic tools for detecting malaria, although being labour-intensive and frequently challenged by lack of personnel’s experience and low levels of parasite density. The latter being especially important in non-endemic settings. Novel molecular techniques aim to overcome this drawback. The objective of this study was to assess the diagnostic performance of the illumigene malaria assay® (Meridian Bioscience) compared to microscopy, RDT and real-time PCR. This loop-mediated isothermal amplification (LAMP) assay is a qualitative in vitro diagnostic test for the direct detection of Plasmodium spp. DNA in human venous whole blood samples.MethodsThe illumigene assay was assessed on a retrospective panel of stored blood samples (n = 103) from returned travellers and external quality control samples (n = 12). Additionally the assay was prospectively assessed on 30 fresh routine samples with a request for malaria diagnosis. The illumigene assay was compared to microscopy, RDT and Plasmodium species specific real-time PCR.ResultsIn the retrospective evaluation, the illumigene assay showed 100% agreement with the real-time PCR, RDT and microscopy yielding a sensitivity and specificity of 100% (95% CI 95.1–100% and 89.7–100%, respectively). Seven samples from patients recently treated for Plasmodium falciparum infection that were RDT positive and microscopy negative yielded positive test results. The performance of the illumigene assay equals that of microscopy combined with RDT in the prospective panel with three false negative RDT results and one false negative microscopy result. Excellent concordance with PCR was observed. The limit of detection of the assay approached 0.5 parasites/µL for both P. falciparum and Plasmodium vivax.ConclusionIn non-endemic regions where the diagnostic process for malaria infections is questioned by lack of experience and low levels of parasite densities, the illumigene assay can be of value. Due to its high sensitivity, the LAMP assay may be considered as primary diagnostic test. The results of this study indicate that negative screen results do not need further confirmation. However, before implementation, this approach needs to be confirmed in larger, prospective studies. A shortcoming of this assay is that no species identification nor determination of parasite density are possible.
IntroductionMultiparameter flow cytometry (FCM) immunophenotyping is an important tool in the diagnostic screening and classification of primary immunodeficiencies (PIDs). The EuroFlow Consortium recently developed the PID Orientation Tube (PIDOT) as a universal screening tool to identify lymphoid-PID in suspicious patients. Although PIDOT can identify different lymphoid-PIDs with high sensitivity, clinical validation in a broad spectrum of patients with suspicion of PID is missing. In this study, we investigated the diagnostic performance of PIDOT, as part of the EuroFlow diagnostic screening algorithm for lymphoid-PID, in a daily practice at a tertiary reference center for PID.MethodsPIDOT was tested in 887 consecutive patients suspicious of PID at the Ghent University Hospital, Belgium. Patients were classified into distinct subgroups of lymphoid-PID vs. non-PID disease controls (non-PID DCs), according to the IUIS and ESID criteria. For the clinical validation of PIDOT, comprehensive characterization of the lymphoid defects was performed, together with the identification of the most discriminative cell subsets to distinguish lymphoid-PID from non-PID DCs. Next, a decision-tree algorithm was designed to guide subsequent FCM analyses.ResultsThe mean number of lymphoid defects detected by PIDOT in blood was 2.87 times higher in lymphoid-PID patients vs. non-PID DCs (p < 0.001), resulting in an overall sensitivity and specificity of 87% and 62% to detect severe combined immunodeficiency (SCID), combined immunodeficiency with associated or syndromic features (CID), immune dysregulation disorder (ID), and common variable immunodeficiency (CVID). The most discriminative populations were total memory and switched memory B cells, total T cells, TCD4+cells, and naive TCD4+cells, together with serum immunoglobulin levels. Based on these findings, a decision-tree algorithm was designed to guide further FCM analyses, which resulted in an overall sensitivity and specificity for all lymphoid-PIDs of 86% and 82%, respectively.ConclusionAltogether, our findings confirm that PIDOT is a powerful tool for the diagnostic screening of lymphoid-PID, particularly to discriminate (S)CID, ID, and CVID patients from other patients suspicious of PID. The combination of PIDOT and serum immunoglobulin levels provides an efficient guide for further immunophenotypic FCM analyses, complementary to functional and genetic assays, for accurate PID diagnostics.
Summary Outcomes in childhood T‐cell acute lymphoblastic leukaemia (T‐ALL) are steadily improving due to intensive therapy. Between 1989 and 2008, 599 children with newly diagnosed T‐ALL were enrolled in two successive European Organization for Research and Treatment of Cancer ‐ Children's Leukaemia Group trials (58881 and 58951), both based on the Berlin‐Frankfurt‐Munster protocol and without cranial irradiation. In the latter trial induction chemotherapy was intensified. The most important randomizations were Medac Escherichia coli asparaginase versus Erwinia asparaginase in trial 58881, and dexamethasone (6 mg/m2/day) versus prednisolone (60 mg/m2/day) and prolonged versus conventional asparaginase duration in trial 58951. 8‐year event‐free survival (EFS) increased from 65·1% to 74·0% in trial 58951. Improvement was most profound for patients with white blood cell (WBC) counts <100 × 109/l and “good responders” to prephase. Medac E. coli asparaginase was associated with longer EFS [hazard ratio (HR) 0·54, P = 0·0015] and overall survival (HR 0·51, P = 0·0018). Induction therapy with dexamethasone did not improve EFS compared to prednisolone. Remarkably, intensification of central nervous system (CNS)‐directed therapy in trial 58951 resulted in fewer bone marrow relapses, while the incidence of CNS relapses remained low. In summary, we showed that adequate asparaginase therapy, intensified induction treatment and intensification of CNS‐directed chemotherapy can result in an improvement of outcome in T‐ALL patients with good prephase response and initial WBC counts <100 × 109/l, representing approximately 50% of T‐ALL patients.
Juvenile myelomonocytic leukemia (JMML), a rare myelodysplastic/myeloproliferative neoplasm of early childhood, is characterized by clonal growth of RAS signaling addicted stem cells. JMML subtypes are defined by specific RAS pathway mutations and display distinct gene, microRNA (miRNA) and long non-coding RNA expression profiles. Here we zoom in on circular RNAs (circRNAs), molecules that, when abnormally expressed, may participate in malignant deviation of cellular processes. CirComPara software was used to annotate and quantify circRNAs in RNA-seq data of a “discovery cohort” comprising 19 JMML patients and 3 healthy donors (HD). In an independent set of 12 JMML patients and 6 HD, expression of 27 circRNAs was analyzed by qRT-PCR. CircRNA-miRNA-gene networks were reconstructed using circRNA function prediction and gene expression data. We identified 119 circRNAs dysregulated in JMML and 59 genes showing an imbalance of the circular and linear products. Our data indicated also circRNA expression differences among molecular subgroups of JMML. Validation of a set of deregulated circRNAs in an independent cohort of JMML patients confirmed the down-regulation of circOXNAD1 and circATM, and a marked up-regulation of circLYN, circAFF2, and circMCTP1. A new finding in JMML links up-regulated circMCTP1 with known tumor suppressor miRNAs. This and other predicted interactions with miRNAs connect dysregulated circRNAs to regulatory networks. In conclusion, this study provides insight into the circRNAome of JMML and paves the path to elucidate new molecular disease mechanisms putting forward circMCTP1 up-regulation as a robust example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.