The final step in the enzymatic synthesis of the ABO(H) blood group A and B antigens is catalyzed by two closely related glycosyltransferases, an ␣-(133)-N-acetylgalactosaminyltransferase (GTA) and an ␣-(133)-galactosyltransferase (GTB). Of their 354 amino acid residues, GTA and GTB differ by only four "critical" residues. High resolution structures for GTB and the GTA/GTB chimeric enzymes GTB/G176R and GTB/G176R/ G235S bound to a Glycosyltransferases synthesize carbohydrate moieties of glycoconjugates by catalyzing the sequential addition of monosaccharides from specific donors to specific acceptors. The ubiquitous presence of glycolipids and glycoproteins in all living systems underlines the importance of the glycosyltransferases superfamily, and the DNA of all domains of life encode for a large number of these enzymes (1). To date, crystal structures of glycosyltransferases have displayed a high degree of structural similarity even when there is low sequence homology (2-4). As such, glycosyltransferases provide an excellent example of the preferential conservation of structural phenotype over the conservation of sequence identity (2), which indicates that the mechanism of glycosylation, although not yet fully understood, has been conserved.
SummaryHere, we describe the rapid cloning of a plant gene, Leptosphaeria maculans 3 (RLM3 Col ), which encodes a putative Toll interleukin-1 receptor-nucleotide binding (TIR-NB) class protein, which is involved in defence against the fungal pathogen L. maculans and against three other necrotrophic fungi. We have, through microarray-based case control bulk segregant comparisons of transcriptomes in pools of Col-0 · An-1 progeny, identified the absence of a locus that causes susceptibility in An-1. The significance of this locus on chromosome 4 for L. maculans resistance was supported by PCR-based mapping, and denoted resistance to RLM3 Col . Differential susceptible phenotypes in four independent T-DNA insertion lines support the hypothesis that At4g16990 is required for RLM3 Col function. The mutants in RLM3 Col also exhibited an enhanced susceptibility to Botrytis cinerea, Alternaria brassicicola and Alternaria brassicae. Complementations of An-1 and T-DNA mutants using overexpression of a short transcript lacking the NB-ARC domain, or a genomic clone, restored resistance to all necrotrophic fungi. The elevated expression of RLM3 Col on B. cinerea-susceptible mutants further suggested convergence in signalling and gene regulation between defence against B. cinerea and L. maculans. In the case of L. maculans, RLM3 Col is required for efficient callose deposition downstream of RLM1 Col .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.