This work investigates the imaging performance, in terms of contrast and resolution, of two different time-gated ballistic imaging setups commonly used in spray research. It is shown that the two setups generate similar spatial resolution in the presence of scattering media. The simpler (2f) setup, however, is less sensitive to component misalignments and time-gate induced aberrations than the commonly used (4f) system. Measurements comparing both arrangements indicated slightly higher contrast for the 2f system under the densest conditions for small scatterers. Subsequent computational modeling confirmed the observed tolerance of the 2f system to misalignment and gate effects. The best performing setup was also compared experimentally to its non-time-gated shadow-imaging equivalent, to establish when the time-gate enhances imaging performance. It is shown that the time-gated setup generates higher contrast under almost all of the scattering conditions tested, while the non-time-gated setup generates higher spatial resolution only in the lower scatterer size range at the lowest scatterer concentrations.
Probing the dynamics of structures in turbid media is important for understanding the internal forces which drive the time-evolution of many fluid systems; the breakup of fuel injection sprays is a prime example. We demonstrate a three-pulse configuration for timegated ballistic imaging, applied to a turbulent, steady spray allowing the acquisition of time-correlated image data. Coupled with targeted region-matching analysis, the detected image-triplets are used to generate timeresolved velocity and acceleration vectors representing motion and forces involved in spray development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.