In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20,000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ⋅ 10(10) photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.
This work describes construction of a source and optimisation of its parameters for production of cluster ion beams using material ablation by the second harmonic of a Nd:YAG laser (532 nm). The influence of different source parameters such as carrier gas pressure, laser power, delay time between gas, and laser pulses as well as nozzle configuration on the cluster formation are studied. For the current experiments the laser ablation cluster source was optimized for production of Con+ cluster ions. Clusters with n up to 150 atoms are registered by a time-of-flight mass spectrometer. Deposition of size-selected Co50+ clusters with kinetic energies in the interval of 250-4850 eV/cluster on highly ordered pyrolytic graphite is studied. At the highest impact energies the clusters are implanted. Craters and well-like structures can be seen by scanning tunneling microscopy at impact spots. A decrease in cluster kinetic energy leads to formation of bumplike structures which probably represent damaged graphite areas with incorporated Co atoms. Further decrease in the cluster impact energy to the level of 450-250 eV/cluster creates condition for so-called cluster pinning when the cluster constituents are intact but the energy transferred to the graphite is still enough to produce radiation defects to which the cluster is bound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.