Abstract. Optical networks are capable of switching IP traffic via lambda connections. In this way, big IP flows that overload the regular IP routing level may be moved to the optical level, where they get better Quality of Service (QoS). At the same time, the IP routing level is off-loaded and can serve smaller flows better. Within this context, this paper analyses the eligibility of IP flows to be moved to the optical level. In this analysis, we observe the percentage of IP traffic as well as the amount of IP flows moved to the optical level while using various definitions for an IP flow. The main contribution of this paper is to show how the amount of IP traffic transferred over lambda-connections considerably depends on the definition used for a flow.
Abstract-The advance on data transmission in optical networks has allowed data forwarding decisions to be taken at multiple levels in the protocol stack (e.g., at network and optical levels). With such capability, big IP flows can be moved from the network level and switched completely at the optical level over lambda-connections, where they get better Quality of Service (QoS). Meanwhile, the regular IP routing level is offloaded and can serve smaller flows better. With the continuous growing of traffic on the Internet, the selection of big IP flows can become difficult to be done by using current management approaches (conventional management and Generalized Multiprotocol Label Switching (GMPLS) signaling). The University of Twente (UT) is researching the use of self-management as an alternative to overcome this issue. In order to properly identify IP flows eligible to be moved to the optical level, the characteristics of these flows must be known, though. In this context, this paper analyses some of the characteristics of IP flows eligible to the optical level by observing their size, duration, throughput, and recurrence. In this analysis, we observe those characteristics while using various definitions for an IP flow as well as using different time intervals. The main contribution of this paper is to show the behavior of IP flows eligible for lambda-connections. Not in the least, we also show how this knowledge can be used in our self-management of optical networks approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.