Solid-state batteries possess the potential to combine increased energy densities, high voltages, as well as safe operation and therefore are considered the future technology for electrical energy storage. In particular, sulfides as solid electrolyte are promising candidates due to their high ionic conductivities and the possibility of a scalable production. This review aims to demonstrate ways to manufacture suspension-based sulfidic solid-state batteries both on a laboratory scale and on an industrial level, focusing on the assessment of current knowl-edge and its discussion from a process engineering point of view. In addition to the influence of process parameters during mechanochemical synthesis of the solid electrolyte, formulation strategies for electrodes and separators are presented. The process chain from dispersion to cell assembly is evaluated. Scale-up technologies are considered in comparison to established techniques in the field of conventional lithium-ion batteries with liquid electrolyte summarizing the current status of sulfidic solid-state battery production.
Lithium–sulfur batteries (LSBs) that utilize sulfur and lithium (Li) metal as electrode materials are highly attractive for transportation applications due to their high theoretical gravimetric energy density. However, two major challenges currently impede the commercialization of LSB, which are the formation of Li dendrites and polysulfide shuttling. To mitigate these two effects, a protective film or artificial solid–electrolyte interface (SEI) can be applied directly to the Li‐metal surface. Herein, the preparation of freestanding polyethylene oxide (PEO)‐based films using tape casting as a scalable coating technique is presented. Moreover, the films are applied directly to the Li surface via a solvent‐free method. To demonstrate the suitability of the developed PEO‐based films, the long‐term cycling performance of the lithium–sulfur cells is discussed. It is shown that the cells with the Li‐metal surface protected by PEO‐based films achieve better stability and reproducibility, reaching ≈400 mA h g S−1 after 250 cycles compared to ≈200 mA h g S−1 after 250 cycles for the bare Li‐metal electrode. An extensive postmortem analysis of the Li‐metal electrode surface with scanning electron microscopy is additionally shown, revealing that the PEO‐based artificial SEIs form uniformly with a low level of defect layers at the interface with the Li‐metal electrode, which indicates the creation of a stable SEI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.