Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis.
Both snail and parasite genes determine the susceptibility of the snail Biomphalaria glabrata to infection with the trematode Schistosoma mansoni. To identify molecular markers associated with resistance to the parasite in the snail host, we performed genetic crosses between parasite-resistant and -susceptible isogenic snails. Because resistance to infection in adult snails is controlled by a single locus, DNA samples from individual F 2 and F 1 backcross progeny, segregating for either the resistant or susceptible phenotypes, were pooled (bulked segregant). Genotypes for both parents were determined with 205 arbitrary decamer primers by random amplified polymorphic DNA-PCR. Of the 205 primers, 144 were informative, and the relative allele frequencies between the pools for these primers were determined. Two primers, OPM-04 and OPZ-11, produced fragments in the resistant parent of one cross that were inherited in a dominant fashion in the resistant F 2 and backcross-bulked segregant progeny. Subsequent typing of DNA samples of individual progeny snails showed that the 1.2-kb marker amplified by primer OPM-04 and the 1.0-kb marker produced by primer OPZ-11 segregated in the same dominant fashion with the resistant phenotype. Sequence analysis of the 1.2-kb marker showed that it corresponds to a repetitive sequence in the snail genome with no homology to existing DNA sequences in the public databases. Analysis of the 1.0-kb marker showed that it also corresponds to a repetitive sequence in the B. glabrata genome that contains an imperfect ORF, with homology to retrovirus-related group-specific antigens (gag) polyprotein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.