The species richness and biodiversity of vegetation in Hungary are increasingly threatened by invasive plant species brought in from other continents and foreign ecosystems. These invasive plant species have spread aggressively in the natural and semi-natural habitats of Europe. Common milkweed (Asclepias syriaca) is one of the species that pose the greatest ecological menace. Therefore, the primary purpose of the present study is to map and monitor the spread of common milkweed, the most common invasive plant species in Europe. Furthermore, the possibilities to detect and validate this special invasive plant by analyzing hyperspectral remote sensing data were investigated. In combination with field reference data, high-resolution hyperspectral aerial images acquired by an unmanned aerial vehicle (UAV) platform in 138 spectral bands in areas infected by common milkweed were examined. Then, support vector machine (SVM) and artificial neural network (ANN) classification algorithms were applied to the highly accurate field reference data. As a result, common milkweed individuals were distinguished in hyperspectral images, achieving an overall accuracy of 92.95% in the case of supervised SVM classification. Using the ANN model, an overall accuracy of 99.61% was achieved. To evaluate the proposed approach, two experimental tests were conducted, and in both cases, we managed to distinguish the individual specimens within the large variety of spreading invasive species in a study area of 2 ha, based on centimeter spatial resolution hyperspectral UAV imagery.
For developing global strategies against the dramatic spread of invasive species, we need to identify the geographical, environmental, and socioeconomic factors determining the spatial distribution of invasive species. In our study, we investigated these factors influencing the occurrences of common milkweed (Asclepias syriaca L.), an invasive plant species that is of great concern to the European Union (EU). In a Hungarian study area, we used country-scale soil and climate databases, as well as an EU-scale land cover databases (CORINE) for the analyses. For the abundance data of A. syriaca, we applied the field survey photos from the Land Use and Coverage Area Frame Survey (LUCAS) Land Cover database for the European Union. With machine learning algorithm methods, we quantified the relative weight of the environmental variables on the abundance of common milkweed. According to our findings, soil texture and soil type (sandy soils) were the most important variables determining the occurrence of this species. We could exactly identify the actual land cover types and the recent land cover changes that have a significant role in the occurrence the common milkweed in Europe. We could also show the role of climatic conditions of the study area in the occurrence of this species, and we could prepare the potential distribution map of common milkweed for the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.