In this paper, we dive into sign language recognition, focusing on the recognition of isolated signs. The task is defined as a classification problem, where a sequence of frames (i.e., images) is recognized as one of the given sign language glosses. We analyze two appearance-based approaches, I3D and TimeSformer, and one pose-based approach, SPOTER. The appearance-based approaches are trained on a few different data modalities, whereas the performance of SPOTER is evaluated on different types of preprocessing. All the methods are tested on two publicly available datasets: AUTSL and WLASL300. We experiment with ensemble techniques to achieve new state-of-the-art results of 73.84% accuracy on the WLASL300 dataset by using the CMA-ES optimization method to find the best ensemble weight parameters. Furthermore, we present an ensembling technique based on the Transformer model, which we call Neural Ensembler.
Since their emergence a few years ago, artificial intelligence (AI)-synthesized media—so-called deep fakes—have dramatically increased in quality, sophistication, and ease of generation. Deep fakes have been weaponized for use in nonconsensual pornography, large-scale fraud, and disinformation campaigns. Of particular concern is how deep fakes will be weaponized against world leaders during election cycles or times of armed conflict. We describe an identity-based approach for protecting world leaders from deep-fake imposters. Trained on several hours of authentic video, this approach captures distinct facial, gestural, and vocal mannerisms that we show can distinguish a world leader from an impersonator or deep-fake imposter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.