Abstract-A novel pseudo noise code acquisition combined with the newly proposed adaptive sampling rate and threshold control (ASTC) algorithm is derived for low-power spread-spectrum systems with complementary metal-oxide-semiconductor implementations. Low-power performance can be achieved by reducing the sampling rate of the proposed system while maintaining the system performance. The sampling rate is dynamically updated due to the change of the channel noise level. Under the assumptions that the channel is additive white Gaussian noise slow-fading channel, up to 74.3% reduction in power consumption compared to the conventional fixed-sampling rate and fixed-threshold architecture is demonstrated with insignificant increase of system complexity. The proposed architecture can be applied to the design of low-power and controllable-performance spread-spectrum communication systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.