A structural profile-based computational screen was used to identify neuropoietin (NP), a new cytokine. The np gene is localized in tandem with the cardiotrophin-1 gene on mouse chromosome 7. NP shares structural and functional features with ciliary neurotrophic factor (CNTF), cardiotrophin-1, and cardiotrophin-like cytokine. It acts through a membrane receptor complex comprising CNTF receptor-␣ component (CNTFR␣), gp130, and leukemia inhibitory factor receptor to activate signal transducer and activator of transcription 3 signaling pathway. NP is highly expressed in embryonic neuroepithelia. Strikingly, CNTFR␣, but not its alternate ligands, CNTF and cardiotrophinlike cytokine, is expressed at the same developmental stages. NP is also observed in retina and to a lesser extent in skeletal muscle. Moreover, NP could sustain the in vitro survival of embryonic motor neurons and could increase the proliferation of neural precursors when associated to epidermal growth factor and fibroblast growth factor 2. Thus, NP is a new ligand for CNTFR␣, with important implications for murine nervous system development.
Calcium current through voltage-gated calcium channels (VGCC) controls gene expression. Here, we describe a novel signalling pathway in which the VGCC Cacnb4 subunit directly couples neuronal excitability to transcription. Electrical activity induces Cacnb4 association to Ppp2r5d, a regulatory subunit of PP2A phosphatase, followed by (i) nuclear translocation of Cacnb4/Ppp2r5d/PP2A, (ii) association with the tyrosine hydroxylase (TH) gene promoter through the nuclear transcription factor thyroid hormone receptor alpha (TRa), and (iii) histone binding through association of Cacnb4 with HP1c concomitantly with Ser 10 histone H3 dephosphorylation by PP2A. This signalling cascade leads to TH gene repression by Cacnb4 and is controlled by the state of interaction between the SH3 and guanylate kinase (GK) modules of Cacnb4. The human R482X CACNB4 mutation, responsible for a form of juvenile myoclonic epilepsy, prevents association with Ppp2r5 and nuclear targeting of the complex by altering Cacnb4 conformation. These findings demonstrate that an intact VGCC subunit acts as a repressor recruiting platform to control neuronal gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.