Identification and antimicrobial susceptibility testing (AST) are critical steps in the management of bloodstream infections. Our objective was to evaluate the performance of the Accelerate Pheno™ System, CE v1.2 software, for identification and AST of Gram-negative pathogens from positive blood culture bottles. A total of 104 bottles positive for Gram-negative bacteria collected from inpatients throughout our institution were randomly selected after Gram staining. The time-to-identification and AST results, and the raw AST results obtained by the Accelerate Pheno™ system and routine techniques (MALDI-TOF MS and VITEK®2, EUCAST guidelines) were compared. Any discrepant AST result was tested by microdilution. The Pheno™ significantly improved turn-around times for identification (5.3 versus 23.7 h; p < 0.0001) and AST (10.7 versus 35.1 h; p < 0.0001). Complete agreement between the Accelerate Pheno™ system and the MALDI-TOF MS for identification was observed for 96.2% of samples; it was 99% (98/99) for monomicrobial samples versus 40% (3/5) for polymicrobial ones. The overall categorical agreement for AST was 93.7%; it was notably decreased for beta-lactams (cefepime 84.4%, piperacillin-tazobactam 86.5%, ceftazidime 87.6%) or Pseudomonas aeruginosa (71.9%; with cefepime 33.3%, piperacillin-tazobactam 77.8%, ceftazidime 0%). Analysis of discrepant results found impaired performance of the Accelerate Pheno™ system for beta-lactams (except cefepime) in Enterobacteriales (six very major errors) and poor performance in P. aeruginosa. The Accelerate Pheno™ system significantly improved the turn-around times for bloodstream infection diagnosis. Nonetheless, improvements in the analysis of polymicrobial samples and in AST algorithms, notably beta-lactam testing in both P. aeruginosa and Enterobacteriales, are required for implementation in routine workflow.
Aims: The characterization and certification of a Legionella DNA quantitative reference material as a primary measurement standard for Legionella qPCR. Methods and Results: Twelve laboratories participated in a collaborative certification campaign. A candidate reference DNA material was analysed through PCR-based limiting dilution assays (LDAs). The validated data were used to statistically assign both a reference value and an associated uncertainty to the reference material. Conclusions: This LDA method allowed for the direct quantification of the amount of Legionella DNA per tube in genomic units (GU) and the determination of the associated uncertainties. This method could be used for the certification of all types of microbiological standards for qPCR. Significance and Impact of the Study: The use of this primary standard will improve the accuracy of Legionella qPCR measurements and the overall consistency of these measurements among different laboratories. The extensive use of this certified reference material (CRM) has been integrated in the French standard NF T90-471 (April 2010) and in the ISO Technical Specification 12 869 (Anon 2012 International Standardisation Organisation) for validating qPCR methods and ensuring the reliability of these methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.