The distribution of several peptides, corticotropin-releasing factor (CRF), neurotensin (NT), enkephalin (ENK), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), cholecystokinin (CCK), thyrotropin-releasing hormone (TRH) and galanin (GAL) was studied in detail with immunohistochemistry in the various subdivisions of the parvocellular part of the rat hypothalamic paraventricular nucleus (PVN). Using a double-staining method and elution-restaining technique, the coexistence of CRF- and NT-like immunoreactivities (LI) with other neuropeptides was analyzed. Our results indicate that coexistence of two or more peptides in the PVN is common, and revealed that about 30% of the CRF neurons contain NT-LI and about 20% ENK-LI, whereas other peptides only occur in small fractions of the CRF cells. Thus, it seems possible to define three major subpopulations of CRF neurons, one containing NT-LI, another one containing ENK-LI and a third one apparently lacking these peptides. Conversely, about 60% of both NT- and ENK-immunoreactive neurons lacked CRF-LI. A large proportion of the small population of VIP/PHI neurons contained NT-LI. TRH neurons represented a neuron population completely distinct from the CRF neurons. Also, it did not seem to contain any of the other peptides studied with the rare exception of ENK-LI. Neuropeptides present in the PVN and presumably in nerve fibers of the external layer of the median eminence may participate in the control of the anterior pituitary hormone secretion. Whereas the role of CRF and TRH is well established, the physiological role of the other peptides studied here is still unclear.
Chromosome 10p terminal deletions have been associated with DiGeorge phenotype, and within the same genomic region haploinsufficiency of GATA3 causes the HDR syndrome (hypoparathyroidism, sensorineural deafness, renal dysplasia). We have performed detailed molecular analysis of four patients with partial overlapping 10p deletions by using FISH-mapping, array-CGH, and custom-designed high-resolution oligonucleotide array. All four patients had mental retardation and speech impairment and three of them showed variable signs of HDR syndrome. In addition, two patients had autistic behaviors and had similar dysmorphic features giving them a striking physical resemblance. A review of the literature identified 10 previously published cases with similar 10p deletions and reliable molecular or molecular cytogenetic mapping data. The combined information of present and previous cases suggests that partial deletions of 10p14-p15 represent a syndrome with a distinct and more severe phenotype than previously assumed. The main characteristics include severe mental retardation, language impairment, autistic behavior, and characteristic clinical features. A critical region involved in mental retardation and speech impairment is defined within 1.6 Mb in 10p15.3. In addition, deletion of 4.3 Mb within 10p14 is associated with autism and characteristic clinical findings.
The aim of the present study was to investigate how oxytocin given subcutaneously (SC) and intracerebroventricularly (ICV) influences the secretion of insulin, glucagon and glucose and to investigate whether the effect on these variables of suckling in lactating rats is mediated by oxytocinergic mechanisms. Male rats were given oxytocin in doses of 2 or 20 ng (SC) or 2 or 200 ng (ICV). Trunk blood was collected and hormone analysis performed by radioimmunoassay. Subcutaneous injections of oxytocin increased insulin, glucagon and glucose levels significantly. Two nanograms oxytocin given ICV had no effect on glucagon and glucose levels but caused a significant rise in insulin levels at this time point. This effect was abolished by atropine. The oxytocin antagonist 1-deamino-2-D-Tyr-(OEt)-4-Thr-8-Orn-oxytocin administered ICV increased insulin levels itself and therefore the effect on oxytocin-induced insulin secretion was difficult to evaluate. Intracerebroventricular injections of 200 ng oxytocin caused a significant rise not only of insulin but also of glucagon and glucose levels. Since this dose of oxytocin also caused a substantial rise of circulating oxytocin levels, these effects on glucose and glucagon may have been exerted at a peripheral site. Suckling in lactating rats was followed by a significant increase of glucose and glucagon levels. These effects were completely abolished by pretreatment with an oxytocin antagonist. In conclusion, oxytocin seems to influence pancreatic hormone secretion by two different mechanisms. Elevated circulating levels of oxytocin – e.g. as seen in response to suckling in lactating rats – are accompanied by a rise of glucagon and glucose levels which is blocked by the oxytocin antagonist. In contrast, nanogram amounts of oxytocin administered ICV cause a rise of insulin levels. Since this effect was blocked by atropine, it is likely to involve activation of vagal cholinergic neurons, innervating pancreatic β-cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.