We have previously suggested a model for the eukaryotic genome based on the structure of the bacterial nucleoid where active RNA polymerases cluster to loop the intervening DNA. This organization of polymerases into clusters – which we call transcription ‘factories’ – has important consequences. For example, in the nucleus of a HeLa cell the concentration of soluble RNA polymerase II is ∼1 mM, but the local concentration in a factory is 1000-fold higher. Because a promoter can diffuse ∼100 nm in 15 s, one lying near a factory is likely to initiate; moreover, when released at termination, it will still lie near a factory, and the movement and modifications (e.g. acetylation) accompanying elongation will leave it in an ‘open’ conformation. Another promoter out in a long loop is less likely to initiate, because the promoter concentration falls off with the cube of the distance from the factory. Moreover, a long tether will buffer it from transcription-induced movement, making it prone to deacetylation, deposition of HP1 (heterochromatin protein 1), and incorporation into heterochromatin. The context around a promoter will then be self-sustaining: productive collisions of an active promoter with the factory will attract factors increasing the frequency of initiation, and the longer an inactive promoter remains inactive, the more it becomes embedded in heterochromatin. We review here the evidence that different factories may specialize in the transcription of different groups of genes.
Multiple endocrine neoplasia type I (MEN1) is an autosomal dominant tumor syndrome, with the presence of tumors in parathyroid, pancreatic, and anterior pituitary. The tumor suppressor gene MEN1, located on chromosome 11q13, encodes a 610 amino acid, 68-kDa protein, menin. Menin is conserved among species but has no similarity with any known protein. To investigate how the expression is regulated in both man and mouse, we assayed a greater than 1-kb region upstream of the second exon for promoter activity in luciferase reporter vectors. The basic promoter was located closely upstream the most commonly expressed first exon. The region further upstream modified the activity. Repetitive elements of the short interspersed/Alu type covered the entire human upstream regulatory region and were the only apparent motif in common with its murine ortholog. Previous studies have indicated a compensatory induction of the second allele because of inactivation of the first allele. We found that overexpression of menin in an inducible cell culture system down-regulated the proximal promoter. In response to down-regulation of MEN1 expression by RNA interference, the regulatory region activated the promoter in a compensatory manner. Our data confirm that the expression of the MEN1 gene is regulated by a feedback from its product menin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.