Self-fertilization occurs in a broad range of hermaphroditic plants and animals, and is often thought to evolve as a reproductive assurance strategy under ecological conditions that disfavour or prevent outcrossing. Nevertheless, selfing ability is far from ubiquitous among hermaphrodites, and may be constrained in taxa where the male and female gametes of the same individual cannot easily meet. Here, we report an extraordinary selfing mechanism in one such species, the free-living flatworm Macrostomum hystrix. To test the hypothesis that adaptations to hypodermic insemination of the mating partner under outcrossing also facilitate selfing, we experimentally manipulated the social environment of these transparent flatworms and then observed the spatial distribution of received sperm in vivo. We find that this distribution differs radically between conditions allowing or preventing outcrossing, implying that isolated individuals use their needle-like stylet (male copulatory organ) to inject own sperm into their anterior body region, including into their own head, from where they then apparently migrate to the site of (self-)fertilization. Conferring the ability to self could thus be an additional consequence of hypodermic insemination, a widespread fertilization mode that is especially prevalent among simultaneously hermaphroditic animals and probably evolves due to sexual conflict over the transfer and subsequent fate of sperm.
While originally acquired from the environment, a fraction of the microbiota is transferred from parents to offspring. The immune system shapes the microbial colonization, while commensal microbes may boost host immune defences. Parental transfer of microbes in viviparous animals remains ambiguous, as the two transfer routes (transovarial vs. pregnancy) are intermingled within the maternal body. Pipefishes and seahorses (syngnathids) are ideally suited to disentangle transovarial microbial transfer from a contribution during pregnancy due to their maternal egg production and their unique male pregnancy. We assessed the persistency and the changes in the microbial communities of the maternal and paternal reproductive tracts over proceeding male pregnancy by sequencing microbial 16S rRNA genes of swabs from maternal gonads and brood pouches of non-pregnant and pregnant fathers. Applying parental immunological activation with heat-killed bacteria, we evaluated the impact of parental immunological status on microbial development. Our data indicate that maternal gonads and paternal brood pouches harbor distinct microbial communities, which could affect embryonal development in a sex-specific manner. Upon activation of the immune system, a shift of the microbial community was observed. The activation of the immune system induced the expansion of microbiota richness during late pregnancy, which corresponds to the time point of larval mouth opening, when initial microbial colonization must take place.
Generating genomic data for 19 tropical reef fish species of the Western Indian Ocean, we investigate how species ecology influences genetic diversity patterns from local to regional scales. We distinguish between the α , β and γ components of genetic diversity, which we subsequently link to six ecological traits. We find that the α and γ components of genetic diversity are strongly correlated so that species with a high total regional genetic diversity display systematically high local diversity. The α and γ diversity components are negatively associated with species abundance recorded using underwater visual surveys and positively associated with body size. Pelagic larval duration is found to be negatively related to genetic β diversity supporting its role as a dispersal trait in marine fishes. Deviation from the neutral theory of molecular evolution motivates further effort to understand the processes shaping genetic diversity and ultimately the diversification of the exceptional diversity of tropical reef fishes.
Habitat stratification by abiotic and biotic factors initiates divergence of populations and leads to ecological speciation. In contrast to fully marine waters, the Baltic Sea is stratified by a salinity gradient that strongly affects fish physiology, distribution, diversity and virulence of important marine pathogens. Animals thus face the challenge to simultaneously adapt to the concurrent salinity and cope with the selection imposed by the changing pathogenic virulence. Western Baltic spring‐spawning herring (Clupea harengus) migrate to spawning grounds characterized by different salinities to which herring are supposedly adapted. We hypothesized that herring populations do not only have to cope with different salinity levels but that they are simultaneously exposed to higher‐order effects that accompany the shifts in salinity, that is induced pathogenicity of Vibrio bacteria in lower saline waters. To experimentally evaluate this, adults of two populations were caught in their spawning grounds and fully reciprocally crossed within and between populations. Larvae were reared at three salinity levels, representing the spawning ground salinity of each of the two populations, or Atlantic salinity conditions resembling the phylogenetic origin of Clupea harengus. In addition, larvae were exposed to a Vibrio spp. infection. Life‐history traits and gene expression analysis served as response variables. Herring seem adapted to Baltic Sea conditions and cope better with low saline waters. However, upon a bacterial infection, herring larvae suffer more when kept at lower salinities implying reduced resistance against Vibrio or higher Vibrio virulence. In the context of recent climate change with less saline marine waters in the Baltic Sea, such interactions may constitute key future stressors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.