An increasing number of applications in biology, chemistry, and material sciences require fluid manipulation beyond what is possible with current automated pipette handlers, such as gradient generation, interface reactions, reagent streaming, and reconfigurability. In this article, we introduce the pixelated chemical display (PCD), a scalable strategy for highly parallel, reconfigurable liquid handling on open surfaces. Microfluidic “pixels” are created when a fluid stream injected above a surface is confined by neighboring identical fluid streams, forming a repeatable flow unit that can be used to tesselate a surface. PCDs generating up to 144 pixels are fabricated and used to project “chemical moving pictures” made of several reagents over both immersed and dry surfaces, without any physical barrier or wall. This work distinguishes itself from previous work in open-space microfluidics by presenting a device architecture where the number of confinement areas can be scaled to any size. Furthermore, it challenges the open-space tenet that the aspiration rate must be higher than the injection rate for reagents to be confined. Overall, this article sets the foundation for massively parallel surface processing using continuous flow streams and showcases possibilities in both wet and dry surface patterning and roll-to-roll processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.