We propose a robust method of discrete choice analysis when agents' choice sets are unobserved. Our core model assumes nothing about agents' choice sets apart from their minimum size. Importantly, it leaves unrestricted the dependence, conditional on observables, between choice sets and preferences. We first characterize the sharp identification region of the model's parameters by a finite set of conditional moment inequalities. We then apply our theoretical findings to learn about households' risk preferences and choice sets from data on their deductible choices in auto collision insurance. We find that the data can be explained by expected utility theory with low levels of risk aversion and heterogeneous non‐singleton choice sets, and that more than three in four households require limited choice sets to explain their deductible choices. We also provide simulation evidence on the computational tractability of our method in applications with larger feasible sets or higher‐dimensional unobserved heterogeneity.
We propose a robust method of discrete choice analysis when agents' choice sets are unobserved. Our core model assumes nothing about agents' choice sets apart from their minimum size. Importantly, it leaves unrestricted the dependence, conditional on observables, between agents' choice sets and their preferences. We first characterize the sharp identification region of the model's parameters by a finite set of conditional moment inequalities. We then apply our theoretical findings to learn about households' risk preferences and choice sets from data on their deductible choices in auto collision insurance. We find that the data can be explained by expected utility theory with low levels of risk aversion and heterogeneous choice sets, and that more than three in four households require limited choice sets to explain their deductible choices. We also find that the data are consistent with some models of choice set formation, but not others.
We propose a robust method of discrete choice analysis when agents' choice sets are unobserved. Our core model assumes nothing about agents' choice sets apart from their minimum size. Importantly, it leaves unrestricted the dependence, conditional on observables, between agents' choice sets and their preferences. We first characterize the sharp identification region of the model's parameters by a finite set of conditional moment inequalities. We then apply our theoretical findings to learn about households' risk preferences and choice sets from data on their deductible choices in auto collision insurance. We find that the data can be explained by expected utility theory with low levels of risk aversion and heterogeneous choice sets, and that more than three in four households require limited choice sets to explain their deductible choices. We also find that the data are consistent with some models of choice set formation, but not others.
No abstract
trauma-centers-charge-outrageous-fees-the-moment-you-come-through/2169148/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.