Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM2.5, PM < 2.5 μm) and ultrafine (PM0.1, PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact.
The polyphenols in fruits and vegetables may be partly responsible for the health-promoting effects attributed to fruit and vegetable intake. Although their properties have been relatively well studied, the activity of their metabolites, produced after ingestion, has been poorly investigated. Thus, the aim of this work was to study the potential anti-inflammatory effect of 18 polyphenol metabolites, derived from colon microbiota. They were screened by measuring prostaglandin E(2) (PGE(2)) production by CCD-18 colon fibroblast cells stimulated with IL-1beta. Metabolites that inhibited more than 50% PGE(2) production were hydrocaffeic (HCAF), dihydroxyphenyl acetic (dOHPA), and hydroferulic acid (HFER), that subsequently were tested with the writhing and paw pressure test in rodents where all three compounds showed an anti-inflammatory effect. The effect of HCAF administered orally (50 mg/kg) was also tested in the dextran sodium sulfate (DSS)-induced colitis model. Weight loss and fecal water content were more pronounced in DSS rats than in DSS-HCAF treated rats. HCAF treatment diminished the expression of the cytokines IL-1beta, IL-8, and TNF-alpha, reduced malonyldialdehyde (MDA) levels and oxidative DNA damage (measured as 8-oxo-2'-deoxyguanosine levels) in distal colon mucosa. These results indicate that HCAF, dOHPA, and HFER have anti-inflammatory activity in vitro and in vivo.
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe and painful adverse reaction of cancer treatment in patients that is little understood or treated. Cytotoxic drugs that cause CIPN exert their effects by increasing oxidative stress, which activates the ion channel TRPA1 expressed by nociceptors. In this study, we evaluated whether TRPA1 acted as a critical mediator of CIPN by bortezomib or oxaliplatin in a mouse model system. Bortezomib evoked a prolonged mechanical, cold, and selective chemical hypersensitivity (the latter against the TRPA1 agonist allyl isothiocyanate). This CIPN hypersensitivity phenotype that was stably established by bortezomib could be transiently reverted by systemic or local treatment with the TRPA1 antagonist HC-030031. A similar effect was produced by the oxidative stress scavenger a-lipoic acid. Notably, the CIPN phenotype was abolished completely in mice that were genetically deficient in TRPA1, highlighting its essential role. Administration of bortezomib or oxaliplatin, which also elicits TRPA1-dependent hypersensitivity, produced a rapid, transient increase in plasma of carboxy-methyl-lysine, a by-product of oxidative stress. Short-term systemic treatment with either HC-030031 or a-lipoic acid could completely prevent hypersensitivity if administered before the cytotoxic drug. Our findings highlight a key role for early activation/sensitization of TRPA1 by oxidative stress byproducts in producing CIPN. Furthermore, they suggest prevention strategies for CIPN in patients through the use of early, short-term treatments with TRPA1 antagonists. Cancer Res; 73(10); 3120-31. Ó2013 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.