Abstract:We report the design of a silicon chip dedicated to the in-situ monitoring of soil nitrogen cycle in wheat crop. Our study shows that ion-sensitive field effect transistor (ISFET) microsensors are suitable for quick on-site or long-term analysis of nutrients measured directly in soil as opposed to soil extracts analysis. Our pH-ISFET recorded soil pH for six months with results in good accordance with standard sampling method and without any loss of sensitivity. The adaptation of pH-ISFET in pNO3 and pNH4-ISFET allowed, for the first time, the in-situ measurements of natural variations of soil nitrogen contents caused by microorganisms' activity
We report the design of a silicon chip dedicated to the in-situ monitoring of soil nitrogen cycle in wheat crop. Our study shows that ion-sensitive field effect transistor (ISFET) microsensors are suitable for quick on-site or long-term analysis of nutrients measured directly in soil as opposed to soil extracts analysis. Our pH-ISFET recorded soil pH for six months with results in good accordance with standard sampling method and without any loss of sensitivity. The adaptation of pH-ISFET in pNO3 and pNH4-ISFET allowed, for the first time, the insitu measurements of natural variations of soil nitrogen contents caused by microorganisms' activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.