SUMMARY
Foxo transcription factors integrate extrinsic signals to regulate cell division, differentiation and survival, and specific functions of lymphoid and myeloid cells. Here we showed the absence of Foxo1 severely curtailed the development of Foxp3+ regulatory T (Treg) cells, and those that developed were nonfunctional in vivo. The loss of function included diminished CTLA-4 receptor expression as the Ctla4 gene was a direct target of Foxo1. T cell specific loss of Foxo1 resulted in exocrine pancreatitis, hind limb paralysis, multi-organ lymphocyte infiltration, anti-nuclear antibodies and expanded germinal centers. Foxo-mediated control over Treg cell specification was further revealed by the inability of TGF-β cytokine to suppress T-bet transcription factor in the absence of Foxo1, resulting in IFN-γ-secretion. In addition the absence of Foxo3 exacerbated the effects of the loss of Foxo1. Thus, Foxo transcription factors guide the contingencies of T cell differentiation and specific functions of effector cell populations.
Highly pathogenic avian influenza viruses pose a continuing global threat. Current vaccines will not protect against novel pandemic viruses. Creating “universal” vaccines has been unsuccessful because the immunological mechanisms promoting heterosubtypic immunity are incompletely defined. We show that rapamycin, an immunosuppressive drug that inhibits mTOR, promotes cross-strain protection against lethal H5N1 and H7N9 infections when administered during H3N2 virus immunization. Rapamycin reduced germinal center formation and inhibited B cell class-switching, yielding a unique repertoire of antibodies that mediated heterosubtypic protection. Our data establish a requirement for mTORC1 in B cell class-switching and demonstrate that rapamycin skews the antibody response away from high affinity variant epitopes, targeting more conserved elements of hemagglutinin. These findings have intriguing implications for influenza vaccine design.
In this paper, the color coding of samples in Figures 3C, 3D, and 4A was incorrect in the version of the paper published online on January 6. CXCR3 À CCR6 À cells should be purple; CXCR3 À CCR6 + cells should be green. The figures have been corrected in the paper that is now online and in the print issue.
In the thymus, positive and negative selection shape the T cell repertoire. It has previously been shown that positive selection, like negative selection, is the result of the interaction of the TCR with self-peptides bound to MHC. However, little is known about the number or nature of the self-peptide ligands that mediate positive selection in vivo. We devised a novel assay with enhanced sensitivity for low affinity TCR ligands to identify self-peptides that may be biologically relevant. At least eight K(b)-bound self-peptides were detected by this assay using thymocytes bearing the OT-I TCR (specific for OVAp/K(b)). The sequence of one of these peptides was determined using the recently developed technique of membrane preconcentration-capillary electrophoresis-tandem mass spectrometry. This peptide, CP alpha1, has limited sequence similarity to OVAp, yet was found to induce positive selection of OT-I thymocytes in fetal thymic organ culture.
DRAK2 is a member of the death-associated protein (DAP)-like family of serine/threonine kinases. Members of this family induce apoptosis in various cell types. DRAK2, in particular, is specifically expressed in T cells and B cells, and it is differentially regulated during T cell development. To determine whether DRAK2 regulates lymphocyte apoptosis, we produced Drak2(-/-) mice. Contrary to our expectations, Drak2(-/-) T cells did not demonstrate any defects in apoptosis or negative selection; however, T cells from Drak2(-/-) mice exhibited enhanced sensitivity to T cell receptor-mediated stimulation with a reduced requirement for costimulation. These results provide evidence that DRAK2 raises the threshold for T cell activation by negatively regulating signals through the TCR. In contrast to other models of T cell hypersensitivity, Drak2(-/-) mice were remarkably resistant to experimental autoimmune encephalomyelitis (EAE). These results expose a new pathway regulating T cell activation and highlight the intricacies of induced autoimmune disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.