The first episodes of floods caused by heavy rainfall during the major rainy season in 2018 occurred in Accra (5.6°N and 0.17°W), a coastal town, and Kumasi (6.72°N and 1.6°W) in the forest region on the 18th and 28th of June, respectively. We applied the Weather Research and Forecasting (WRF) model to investigate and examine the meteorological dynamics, which resulted in the extreme rainfall and floods that caused 14 deaths, 34076 people being displaced with damaged properties, and economic loss estimated at $168,289 for the two cities according to the National Disaster Management Organization (NADMO). The slow-moving thunderstorms lasted for about 8 hours due to the weak African Easterly Wave (AEW) and Tropical Easterly Jet (TEJ). Results from the analysis showed that surface pressures were low with significant amount of moisture influx aiding the thunderstorms intensification, which produced 90.1 mm and 114.6 mm of rainfall over Accra and Kumasi, respectively. We compared the rainfall amount from this event to the historical rainfall data to investigate possible changes in rainfall intensities over time. A time series of annual daily maximum rainfall (ADMR) showed an increasing trend with a slope of 0.45 over Accra and a decreasing trend and a slope of –0.07 over Kumasi. The 95th percentile frequencies of extreme rainfall with thresholds of 45.10 mm and 42.16 mm were analyzed for Accra and Kumasi, respectively, based on the normal distribution of rainfall. Accra showed fewer days with more heavy rainfall, while Kumasi showed more days with less heavy rainfalls.
Satellite rainfall estimates have predominantly been used for climate impact studies due to poor rain gauge network in sub-Saharan Africa. However, there are limited microscale studies within the sub-region that have assessed the performance of these satellite products, which is the focus of the present study. This paper therefore considers validation of Tropical Rainfall Measuring Mission (TRMM) and Famine Early Warning System (FEWS) satellite estimates with rain gauge measurements over Ashanti region of Ghana. First, a consistency assessment of the two gauge data products, the Automatic Rain Gauge (ARG) and Ghana Meteorological Agency (GMet) Standard Rain Gauge (SRG) measurements, was performed. This showed a very good agreement with correlation coefficient of 0.99. Secondly, satellite rainfall products from TRMM and FEWS were validated with the two gauge measurements. Validation results showed good agreement with correlation coefficients of 0.6 and 0.7 for TRMM and FEWS with SRG, and 0.87 and 0.86 for TRMM and FEWS with ARG respectively. Probability Of Detection (POD) and Volumetric Hit Index (VHI) were found to be greater than 0.9. Volumetric Critical Success Index (VCSI) was 0.9 and 0.8 for TRMM and FEWS respectively with low False Alarm Ratio (FAR) and insignificant Volumetric Miss Index (VMI). In general, relatively low biases and RMSE values were observed. The biases were less than 1.3 and 0.8 for TRMM and FEWS-RFE respectively. These indicate high rainfall detection capabilities of both satellite products. In addition, both TRMM and FEWS were able to capture the onset, peak and cessation of the rainy season, as well as the dry spells. Although TRMM and FEWS sometimes under/overestimated rainfall, they have the potential to be used for agricultural and other hydro-climatic impact studies over the region. The Dynamic- 501Aerosol-Cloud-Chemistry Interactions in West Africa (DACCIWA) project will provide an improved spatial gauge network database over the study area to enhance future validation and other climate impact studies.
The monitoring of rainfall variability over recent decades has become a necessity due to its devastating effects such as floods and droughts, which render humans vulnerable across different parts of the West African region. The current study seeks to provide a good understanding of variability within the minor rainfall season over southern Ghana by employing statistical tools to quantify variability in rainfall. Daily rainfall data from 1981 to 2018 for seventeen (17) synoptic weather stations across southern Ghana are used for this analysis. We perform trend and descriptive statistics of rainfall amount and extreme indices intending to identify the areas with the greatest variability in rainfall. Further, for five recent years (2014–2018), we do an interpolation of the ground station rainfall data and compute anomalies. We find increasing trends of rainfall in the minor rainy season for 16 out of the 17 stations, with rainfall increasing between 0.10 mm and 4.30 mm each season. For extreme rainfall indices, the 17 stations show nonsignificant trends of very wet and extremely wet days. We also find that the middle parts of Ghana have the highest rainfall amounts (262.7 mm/season–400.2 mm/season), while the East Coast has the lowest (125.2 mm/season–181.8 mm/season). Over the whole of southern Ghana, we find high variability in rainfall amount with the coefficient of variations (CV) between 25.3% and 70.8% and moderate to high variability in rainfall frequency (CV = 14.0%–48.8%). The results of rainfall anomalies show that the middle parts had an above-normal rainfall amount. In the same period, the transition areas experienced below-normal rainfall. Our finding of high variability in the minor rainfall season has implications for agricultural productivity in Ghana and countries in the West African region, which rely heavily on rain-fed agriculture. Hence, this study recommends more research to understand the causes of variability in the West African monsoon and how this will change in the region.
The Ghana Meteorological Agency delineated Ghana’s geographical space into four agro-climatic zones namely the north, transition, forest and coastal zones. Since the demarcation in the 1960s, previous studies have rarely provided a more dis-aggregated agro-climatic zone map in tandem with contemporary climate change and variability. The continued use of this age-old classified zones is a disservice to the public. In this study, therefore, we evaluated the existing agro-climatic zone map of Ghana and reconstructed it to a more appropriate and dis-aggregated map that reflect current climate change and variability impact. This was achieved by quantifying the contrast in rainfall and temperature amount over a 30 year period for different climate windows and mapped out areas with similar rainfall and temperature regimes. Our findings revealed significant changes in the existing agro-climatic zones especially in terms of number, the boundary size and geographical orientation of the zones. The newly proposed map consist of five distinctive climate zones namely: the Sudan Savannah, Guinea Savannah, Transition, Forest and Coastal zones. The Sudan and Guinea Savannah zones showed a southerly expansion. The transition zone shriveled in size as the Guinea Savannah zone took over most of it, notably in the southeast. The forest zone shrank in size with a northwest shift while the coastal belt grew to encompass the whole coast of Ghana. These changes are strong evidence of climate change and possible food production changes. These findings are useful to agriculture sector in planning their activities, the health sector in predicting specific diseases caused by changes in weather and climate, Ghana Meteorological Agency for weather forecasting purposes, and the National Disaster Management in identifying disaster prone zones.
Testbeds have become integral to advancing the transfer of knowledge and capabilities from research to operational weather forecasting in many parts of the world. The first high-impact weather testbed in tropical Africa was recently carried out through the African SWIFT program, with participation from researchers and forecasters from Senegal, Ghana, Nigeria, Kenya, the United Kingdom, and international and pan-African organizations. The testbed aims were to trial new forecasting and nowcasting products with operational forecasters, to inform future research, and to act as a template for future testbeds in the tropics. The African SWIFT testbed integrated users and researchers throughout the process to facilitate development of impact-based forecasting methods and new research ideas driven both by operations and user input. The new products are primarily satellite-based nowcasting systems and ensemble forecasts at global and regional convection-permitting scales. Neither of these was used operationally in the participating African countries prior to the testbed. The testbed received constructive, positive feedback via intense user interaction including fishery, agriculture, aviation, and electricity sectors. After the testbed, a final set of recommended standard operating procedures for satellite-based nowcasting in tropical Africa have been produced. The testbed brought the attention of funding agencies and organizational directors to the immediate benefit of improved forecasts. Delivering the testbed strengthened the partnership between each country’s participating university and weather forecasting agency and internationally, which is key to ensuring the longevity of the testbed outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.