For over fifty years, reservoir development around the world has covered different reservoir types and environments with vast technology, expertise and a growing variety of approaches. However, the predominant challenge from which a myriad of other field development issues arise has been on how to accurately characterise reservoir parameters because the obtained results are largely associated with uncertainties due to subsurface geological complexities. This paper focuses on the evolving advances and current practices in reservoir uncertainty modelling and gives insight into the future trends. This work critically examines the foremost statistical reservoir uncertainty analysis approaches, the current probabilistic and stochastic uncertainty modelling workflows which are typically based on various numerical models, and the very recent development of embedding some artificial intelligence algorithms (which include genetic algorithms, artificial neural networks, Bayesian networks amongst others) in reservoir uncertainty modelling, which now points to a future of using more sophisticated machine learning systems for achieving reservoir models and parameters with higher confidence. These evolving trends and approaches are discussed in more detail in this paper; with an in-depth analysis of the associated workflows, fundamental principles, strengths, weaknesses, robustness and economics of each approach. Also, reconciliation between the statistical, probabilistic, stochastic and artificial intelligence methods present a deep insight into the prospects of using artificial intelligence for optimising the modelling of reservoir uncertainties beyond the capabilities of conventional methods. Thus saving time and cost by quantifying the uncertainties in reservoir properties as well as regenerating new best-fit reservoir attributes using the robust uncertainty analysis networks and the pattern-recognition ability of machine learning networks. Hence, this paper presents a comprehensive review of the various uncertainty analysis methods, and also analyses the confidence of artificial intelligence applications which are increasingly pushing the frontiers to improved uncertainty modelling.
The selection of an optimal model from a set of multiple realizations for dynamic reservoir modelling and production forecasts has been a persistent issue for reservoir modelers and decision makers. Current evidence has shown that many presumably good reservoir models which originally matched the true historic data did not always perform well in predicting the future of the reservoir as a result of uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.