This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.
BackgroundInterpreting and controlling bioelectromagnetic phenomena require realistic physiological models and accurate numerical solvers. A semi-realistic model often used in practise is the piecewise constant conductivity model, for which only the interfaces have to be meshed. This simplified model makes it possible to use Boundary Element Methods. Unfortunately, most Boundary Element solutions are confronted with accuracy issues when the conductivity ratio between neighboring tissues is high, as for instance the scalp/skull conductivity ratio in electro-encephalography. To overcome this difficulty, we proposed a new method called the symmetric BEM, which is implemented in the OpenMEEG software. The aim of this paper is to present OpenMEEG, both from the theoretical and the practical point of view, and to compare its performances with other competing software packages.MethodsWe have run a benchmark study in the field of electro- and magneto-encephalography, in order to compare the accuracy of OpenMEEG with other freely distributed forward solvers. We considered spherical models, for which analytical solutions exist, and we designed randomized meshes to assess the variability of the accuracy. Two measures were used to characterize the accuracy. the Relative Difference Measure and the Magnitude ratio. The comparisons were run, either with a constant number of mesh nodes, or a constant number of unknowns across methods. Computing times were also compared.ResultsWe observed more pronounced differences in accuracy in electroencephalography than in magnetoencephalography. The methods could be classified in three categories: the linear collocation methods, that run very fast but with low accuracy, the linear collocation methods with isolated skull approach for which the accuracy is improved, and OpenMEEG that clearly outperforms the others. As far as speed is concerned, OpenMEEG is on par with the other methods for a constant number of unknowns, and is hence faster for a prescribed accuracy level.ConclusionsThis study clearly shows that OpenMEEG represents the state of the art for forward computations. Moreover, our software development strategies have made it handy to use and to integrate with other packages. The bioelectromagnetic research community should therefore be able to benefit from OpenMEEG with a limited development effort.
Abstract-The forward electro-encephalography (EEG) problem involves finding a potential V from the Poisson equation ∇ · (σ∇V ) = f , in which f represents electrical sources in the brain, and σ the conductivity of the head tissues. In the piecewise constant conductivity head model, this can be accomplished by the Boundary Element Method (BEM) using a suitable integral formulation. Most previous work uses the same integral formulation, corresponding to a double-layer potential. In this article we present a conceptual framework based on a well-known theorem (Theorem 1) that characterizes harmonic functions defined on the complement of a bounded smooth surface. This theorem says that such harmonic functions are completely defined by their values and those of their normal derivatives on this surface. It allows us to cast the previous BEM approaches in a unified setting and to develop two new approaches corresponding to different ways of exploiting the same theorem. Specifically, we first present a dual approach which involves a single-layer potential. Then, we propose a symmetric formulation, which combines single and double-layer potentials, and which is new to the field of EEG, although it has been applied to other problems in electromagnetism. The three methods have been evaluated numerically using a spherical geometry with known analytical solution, and the symmetric formulation achieves a significantly higher accuracy than the alternative methods. Additionally, we present results with realistically shaped meshes. Beside providing a better understanding of the foundations of BEM methods, our approach appears to lead also to more efficient algorithms.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.