Using a three-dimensional general circulation model, we show that the atmospheric dynamics on a tidally locked Earth-like exoplanet, simulated with the planetary and orbital parameters of Proxima Centauri b, support a longitudinally asymmetric stratospheric wind oscillation (LASO), analogous to Earth’s quasi-biennial oscillation (QBO). In our simulations, the LASO has a vertical extent of 35–55 km, a period of 5–6.5 months, and a peak-to-peak wind speed amplitude of −70 to +130 m s−1 with a maximum at an altitude of 41 km. Unlike the QBO, the LASO displays longitudinal asymmetries related to the asymmetric thermal forcing of the planet and to interactions with the resulting stationary Rossby waves. The equatorial gravity wave sources driving the LASO are localized in the deep convection region at the substellar point and in a jet exit region near the western terminator, unlike the QBO, for which these sources are distributed uniformly around the planet. Longitudinally, the western terminator experiences the highest wind speeds and undergoes reversals earlier than other longitudes. The antistellar point only experiences a weak oscillation with a very brief, low-speed westward phase. The QBO on Earth is associated with fluctuations in the abundances of water vapor and trace gases such as ozone, which are also likely to occur on exoplanets if these gases are present. Strong fluctuations in temperature and the abundances of atmospheric species at the terminators will need to be considered when interpreting atmospheric observations of tidally locked exoplanets.
Cloud cover at the planetary limb of water-rich Earth-like planets is likely to weaken chemical signatures in transmission spectra, impeding attempts to characterize these atmospheres. However, based on observations of Earth and Solar System worlds, exoplanets with atmospheres should have both short-term weather and long-term climate variability, implying that cloud cover may be less during some observing periods. We identify and describe a mechanism driving periodic clear sky events at the terminators in simulations of tidally locked Earth-like planets. A feedback between dayside cloud–radiative effects, incoming stellar radiation and heating, and the dynamical state of the atmosphere, especially the zonal wavenumber 1 Rossby wave identified in past work on tidally locked planets, leads to oscillations in Rossby wave phase speeds and in the position of Rossby gyres, and this results in advection of clouds to or away from the planet’s eastern terminator. We study this oscillation in simulations of Proxima Centauri b, TRAPPIST-1e, and rapidly rotating versions of these worlds located at the inner edge of their stars’ habitable zones. We simulate time series of the transit depths of the 1.4 μm water feature and 2.7 μm carbon dioxide feature. The impact of atmospheric variability on the transmission spectra is sensitive to the structure of the dayside cloud cover and the location of the Rossby gyres, but none of our simulations have variability significant enough to be detectable with current methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.