A single cycle of viral replication is the time required for a virus to enter the host cell, replicate its genome, and produce infectious progeny virions. The primate lentiviruses, human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV), require on average 24 h to complete one cycle of replication. We have now developed and characterized a reporter assay system in CEMx174 cells for the quantitative measurement of HIV/SIV infection within a single replication cycle. The SIV(mac)239 LTR (-225 --> +149) was cloned upstream of the firefly luciferase reporter gene and this reporter plasmid is maintained in CEMx174 cells under stable selection. This cell line, designated LuSIV, is highly sensitive to infection by primary and laboratory strains of HIV/SIV, resulting in Tat-mediated expression of luciferase, which correlates with viral infectivity. Furthermore, manipulation of LuSIV cells for the detection of luciferase activity is easy to perform and requires a minimal amount of time as compared to current HIV/SIV detection systems. The LuSIV system is a powerful tool for the analysis of HIV/SIV infection that provides a unique assay system that can detect virus replication prior to 24 h and does not require virus to spread from cell to cell. Thus these cells can be used for the study of replication-deficient viruses and the high throughput screening of antivirals, or other inhibitors of infection.
HIV-1 genetic diversity among circulating strains presents a major challenge for HIV-1 vaccine development, particularly for developing countries where less sequence information is available. To identify representative viruses for inclusion in candidate vaccines targeted for South Africa, we applied an efficient sequence survey strategy to samples from recently and chronically infected persons residing in potential vaccine trial sites. All 111 sequences were subtype C, including 30 partial gag, 26 partial pol, 27 V2-V3 env, and 28 V5-partial gp41 sequences. Of the 10 viruses cultured from recently infected individuals, 9 were R5 and 1 was R5X4. Two isolates, Du151 and Du422, collected within 2 months of infection, were selected as vaccine strains on the basis of their amino acid similarity to a derived South African consensus sequence The selection of recently transmitted R5 isolates for vaccine design may provide an advantage in a subtype C R5-dominant epidemic. The full-length Du422 gag and Du151 pol and env genes were cloned into the Venezuelan equine encephalitis (VEE) replicon particle (VRP) expression system. Du422 Gag protein expressed from the VRP accumulated to a high level and was immunogenic as demonstrated by cytotoxic T lymphocyte responses in mice vaccinated with gag-VRPs. Optimization of codon use for VRP expression in human cells did not enhance expression of the gag gene. The cloned Du151 env gene encoded a functional protein as demonstrated by fusion of VRP-infected cells with cells expressing CD4 and CCR5. Genes identified in this study have been incorporated into the VEE VRP candidate vaccines targeted for clinical trial in South Africa.
SummaryReplicon particles based on Venezuelan equine encephalitis virus (VEE) contain a self-replicating RNA encoding the VEE replicase proteins and expressing a gene of interest in place of the viral structural protein genes. Structural proteins for packaging of replicon RNA into VEE replicon particles (VRPs) are expressed from separate helper RNAs. Aspects of the biology of VEE that are exploited in VRP vaccines include 1) expression of very high levels of immunogen, 2) expression of immunizing proteins in cells in the draining lymph node, and 3) the ability to induce mucosal immunity from a parental inoculation. Results of experiments with VRPs expressing green fluorescent protein or influenza virus hemagglutinin (HA) demonstrated that specific mutations in the VRP envelope glycoproteins affect both targeting in the draining lymph node and efficiency of the immune response in mice. VRPs expressing either the matrix-capsid portion of Gag, the full-length envelope gp160, or the secreted gp140 of cloned SIVsm H-4i were mixed in a cocktail and used to immunize macaques at 0, 1, and 4 months. Neutralizing antibodies against SIVsm H-4 were induced in 6 of 6 vaccinates and CTL in 4 of 6. An intrarectal challenge with the highly pathogenic SIVsm E660 was given at 5 months. A vaccine effect was seen in reduced peak virus loads, reduced virus loads both at set point and at 41 weeks postchallenge, and preserved or increased CD4 counts compared to controls. A candidate VRP HIV vaccine expressing Clade C Gag contains a sequence that is very close to the South African Clade C consensus and was selected from a recent seroconverter in the Durban cohort to represent currently circulating genotypes in South Africa. A GMP lot of this vaccine
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.