Experimental evidence from several sources has identi®ed a link between mismatch repair de®ciency and cytotoxic drug resistance. Selection for cisplatin resistance in the human ovarian cancer cell line A2780, results in loss of expression of the mismatch repair protein hMLH1 in most (90%) of the resultant cisplatin-resistant cell lines. Here we demonstrate that the cisplatin sensitive parental cell line displays methylation of the promoter of only one hMLH1 allele, but that the resistant cell lines all exhibit hyper-methylation of the promoters of both hMLH1 alleles. Full methylation of all sites tested was found to be invariably associated with loss of hMLH1 expression, whereas a partial increase in methylation appears compatible with either loss or maintenance of expression. In addition treatment of two of the resistant cell lines with 5-azacytidine, a known inhibitor of methylation, results in re-expression of hMLH1. Clonogenic assays demonstrate that the 5-azacytidine treated cells show increased sensitivity to cisplatin. Furthermore, 12.5% (3/ 24) of ovarian tumours show hypermethylation of the hMLH1 promoter. Expression of hMLH1 is absent in the tumours that are hypermethylated, while all the unmethylated tumours still express the protein. This analysis suggests that methylation of the hMLH1 promoter may be a common mechanism for loss of hMLH1 expression, and possibly for cisplatin-resistance, in ovarian cancer.
Mounting evidence suggests that aberrant methylation of CpG islands is a major pathway leading to the inactivation of tumor suppressor genes and the development of cancer. Recent studies on colorectal and gastric cancer have defined a CpG island methylator phenotype (CIMP), which involves the targeting of multiple genes by promoter hypermethylation. To determine the role of methylation in ovarian cancer, we have investigated the methylation status of 93 primary ovarian tumors at ten loci using methylationspecific polymerase chain reaction (MSP). Seven of the loci (BRCA1, HIC1, MINT25, MINT31, MLH1, p73 and hTR) were found to be methylated in a significant proportion of the ovarian tumors, and methylation of at least one of these was found in the majority (71%) of samples. Although concurrent methylation of multiple genes was commonly seen, this did not seem to be due to a single CIMP phenotype. Instead the results suggest the presence of at least three groups of tumors, two CIMP-positive groups, each susceptible to methylation of a different subset of genes, and a further group of tumors not susceptible to CpG island methylation, at least at the loci studied. In human genomic DNA the CpG dinucleotide is generally underrepresented and the majority exhibit methylation at the 5Ј position of the cytosine.
Mismatch repair (MMR) proteins repair mispaired DNA bases and have an important role in maintaining the integrity of the genome [1]. Loss of MMR has been correlated with resistance to a variety of DNA-damaging agents, including many anticancer drugs [2]. How loss of MMR leads to resistance is not understood, but is proposed to be due to loss of futile MMR activity and/or replication stalling [3] [4]. We report that inactivation of MMR genes (MLH1, MLH2, MSH2, MSH3, MSH6, but not PMS1) in isogenic strains of Saccharomyces cerevisiae led to increased resistance to the anticancer drugs cisplatin, carboplatin and doxorubicin, but had no effect on sensitivity to ultraviolet C (UVC) radiation. Sensitivity to cisplatin and doxorubicin was increased in mlh1 mutant strains when the MLH1 gene was reintroduced, demonstrating a direct involvement of MMR proteins in sensitivity to these DNA-damaging agents. Inactivation of MLH1, MLH2 or MSH2 had no significant effect, however, on drug sensitivities in the rad52 or rad1 mutant strains that are defective in mitotic recombination and removing unpaired DNA single strands. We propose a model whereby MMR proteins - in addition to their role in DNA-damage recognition - decrease adduct tolerance during DNA replication by modulating the levels of recombination-dependent bypass. This hypothesis is supported by the finding that, in human ovarian tumour cells, loss of hMLH1 correlated with acquisition of cisplatin resistance and increased cisplatin-induced sister chromatid exchange, both of which were reversed by restoration of hMLH1 expression.
Microsatellites are highly polymorphic repetitive DNA segments dispersed throughout the genome and have been widely used for genetic linkage analysis and allele loss. Instability of microsatellites sequences has been linked to deficiencies in DNA mismatch repair, and is observed in a number of different tumor types. Analysis of microsatellite instability is thought to be a useful clinical tool for cancer diagnosis. Fluorescent detection of microsatellite instability using an automated DNA sequencer holds several distinct advantages over traditional radioactive analysis and electrophoresis, allowing simultaneous analysis of a number of different markers for a large number of samples, high resolution, sensitivity, and clear interpretation of data. In this article we present an established protocol, which has been used successfully to detect microsatellite instability in DNA samples from human tumors and circulating tumor DNA in serum/plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.