cWhile the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser.A fter many years of study, we are only now beginning to understand and appreciate the complexity of bacterial transcriptomes. With the recent advances in deep-sequencing technology, transcriptome sequencing (RNA-seq) now allows for the detection of transcripts that are present at low levels or were previously missed by other methods of detection, the generation of global transcript maps, and improved genome annotation (reviewed in references 1 and 2). While these studies provide vast amounts of information about bacterial transcriptomes and regulatory elements, they also raise challenges regarding comparisons between studies and functions of the newly identified transcripts.One group of underappreciated transcripts being uncovered by these genome-wide analyses are RNAs that map opposite annotated coding regions, termed antisense RNAs (asRNAs). The abundance of pervasive antisense transcription start sites (asTSS) was first highlighted in an RNA-seq survey of the human pathogen Helicobacter pylori, where asTSS were identified opposite ϳ46% of the genes (3). Subsequent RNA-seq studies in cyanobacteria (4) and Gram-negative (5, 6) and Gram-positive (7-9) bacteria identified asRNAs expressed opposite 2 to 30% of annotated genes. This wide range in numbers of asRNAs reported may reflect differences in bacterial lifestyle or differences in the experimental setup or analyses of the RNA-seq data sets.Even for the transcriptome analyses of the well-studied model organism Escherichia coli (10-22), the numbers of asRNAs reported range from hundreds to thousands. This significant variation is due, in part, to differences i...
Antisense RNAs encoded on the DNA strand opposite another gene have the potential to form extensive base pairing interactions with the corresponding sense RNA. Unlike other smaller regulatory RNAs in bacteria, antisense RNAs range in size, from tens to thousands of nucleotides. The numbers of antisense RNAs reported for different bacteria vary extensively but hundreds have been suggested in some species. If all of these reported antisense RNAs are expressed at levels sufficient to regulate the genes encoded opposite them, antisense RNAs could significantly impact gene expression in bacteria. Here we review the evidence for these RNA regulators and describe what is known about the functions and mechanisms of action for some of these RNAs. Important considerations for future research as well as potential applications are also discussed.
Summary In bacteria, many small regulatory RNAs (sRNAs) are induced in response to specific environmental signals or stresses and act by base pairing with mRNA targets to affect protein translation or mRNA stability. In Escherichia coli, the gene for the sRNA IS061/IsrA, here renamed McaS, was predicted to reside in an intergenic region between abgR, encoding a transcription regulator and ydaL, encoding a small MutS-related protein. We show that McaS is a ~95 nt transcript whose expression increases over growth, peaking in early-to-mid stationary phase, or when glucose is limiting. McaS uses three discrete single-stranded regions to regulate mRNA targets involved in various aspects of biofilm formation. McaS represses csgD, the transcription regulator of curli biogenesis and activates flhD, the master transcription regulator of flagella synthesis leading to increased motility, a process not previously reported to be regulated by sRNAs. McaS also regulates pgaA, a porin required for the export of the polysaccharide poly β-1,6 N-acetyl-D-glucosamine. Consequently, high levels of McaS result in increased biofilm formation while a strain lacking mcaS shows reduced biofilm formation. Based on our observations, we propose that, in response to limited nutrient availability, increasing levels of McaS modulate steps in the progression to a sessile lifestyle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.