Background & Aims HCV patients who fail conventional interferon-based therapy have limited treatment options. Dendritic cells are central to the priming and development of antigen-specific CD4+ and CD8+ T cell immunity, necessary to elicit effective viral clearance. The aim of the study was to investigate the safety and efficacy of vaccination with autologous dendritic cells loaded with HCV-specific cytotoxic T cell epitopes. Methods We examined the potential of autologous monocyte derived dendritic cells (MoDC), presenting HCV-specific HLA A2.1-restricted cytotoxic T cell epitopes, to influence the course of infection in six patients who failed conventional therapy. Dendritic cells were loaded and activated ex vivo with lipopeptides. In this phase 1 dose escalation study, all patients received a standard dose of cells by the intradermal route while sequential patients received an increased dose by the intravenous route. Results No patient showed a severe adverse reaction although all experienced transient minor side effects. HCV-specific CD8+ T cell responses were enumerated in PBMC by ELIspot for interferon-γ. Patients generated de novo responses, not only to peptides presented by the cellular vaccine but also to additional viral epitopes not represented in the lipopeptides, suggestive of epitope spreading. Despite this, no increases in ALT levels were observed. However, the responses were not sustained and failed to influence the viral load, the anti-HCV core antibody response and the level of circulating cytokines. Conclusions Immunotherapy using autologous MoDC pulsed with lipopeptides was safe, but was unable to generate sustained responses or alter the outcome of the infection. Alternative dosing regimens or vaccination routes may need to be considered to achieve therapeutic benefit.
Developing a process to generate dendritic cells (DCs) applicable for multicenter trials would facilitate cancer vaccine development. Moreover, targeting multiple antigens with such a vaccine strategy could enhance the efficacy of such a treatment approach. We performed a phase 1/2 clinical trial administering a DC-based vaccine targeting multiple tumor-associated antigens to patients with advanced colorectal cancer (CRC). A qualified manufacturing process was used to generate DC from blood monocytes using granulocyte macrophage colony-stimulating factor and IL-13, and matured for 6 hours with Klebsiella-derived cell wall fraction and interferon-gamma (IFN-gamma). DCs were also loaded with 6 HLA-A*0201 binding peptides derived from carcinoembryonic antigen (CEA), MAGE, and HER2/neu, as well as keyhole limpet hemocyanin protein and pan-DR epitope peptide. Four planned doses of 35x10(6) cells were administered intradermally every 3 weeks. Immune response was assessed by IFN-gamma enzyme-linked immunosorbent spot (ELISPOT). Matured DC possessed an activated phenotype and could prime T cells in vitro. In the trial, 21 HLA-A2+ patients were apheresed, 13 were treated with the vaccine, and 11 patients were evaluable. No significant treatment-related toxicity was reported. T-cell responses to a CEA-derived peptide were detected by ELISPOT in 3 patients. T cells induced to CEA possessed high avidity T-cell receptors. ELISPOT after in vitro restimulation detected responses to multiple peptides in 2 patients. All patients showed progressive disease. This pilot study in advanced CRC patients demonstrates DC-generated granulocyte macrophage colony-stimulating factor and IL-13 matured with Klebsiella-derived cell wall fraction and IFN-gamma can induce immune responses to multiple tumor-associated antigens in patients with advanced CRC.
Dendritic cell (DC) immunotherapy is being actively studied in multiple myeloma (MM). We aimed to use positron emission tomography or single positron emission tomography to determine the in vivo distribution of monocyte-derived nonmatured DC or matured DC (mDC) administered to patients with MM. Eligible patients had stable or slowly progressive MM and elevated serum MUC-1 or MUC-1 expression on marrow plasma cells. DCs were derived from granulocyte-macrophage colony-stimulating factor+ interleukin-13 stimulated autologous monocytes, pulsed with mannan-MUC1 fusion protein, and matured by FMKp and interferon-gamma. Before injection, DCs were labeled with either 18fluorine-fluorodeoxyglucose, 111indium-oxine or 64copper-pyruvaldehyde-bis-N-4-methylthiosemicarbazone. Labeled DCs were given either as a single intravenous dose or by concurrent subcutaneous (SC), intradermal (ID), and intranodal routes. 18Fluorine-fluorodeoxyglucose tracking was unsuccessful owing to high radiolabel efflux. 64Copper-pyruvaldehyde-bis-N-4-methylthiosemicarbazone-labeled mDC (n=2 patients) demonstrated tracking to regional nodes but quantitation was also limited owing to cellular efflux. 111Indium-oxine, however, gave reproducible tracking of both nmDc and mDC (n=6) to regional lymph node after either SC or ID administration, with mDC revealing superior migration to regional lymph node. SC and ID routes produced similar levels of DC migration.
Adhering platelets on the cell surface can give misleading results when doing flow cytometry analysis of platelet/megakaryocyte‐specific glycoprotein (GP) antigens to enumerate megakaryocytes (MK) in mobilized peripheral blood (PB), apheresis products, or normal bone marrow (BM). For adequate quantification and characterization of human MK, we examined samples with parallel flow cytometry and immunocytochemistry. MK expression of GP IIb/IIIa (CD41a), GP Ib (CD42b), GP IIIa (CD61), CD45, CD33, and CD11b, and their light scatter properties were evaluated. Fresh samples of low density mononuclear cells (MNC) or purified CD34+ cells contained 10–45% of platelet‐coated cells. Platelet‐coated cells decreased dramatically after several days of incubation in a serum‐free medium supplemented with stem cell factor, IL‐3, IL‐6, and/or GM‐CSF. Between d 9–12, flow cytometry detected a distinct CD41a+ MK population, 8.3 ± 1.3% in BM CD34 cell cultures (n = 7) and 13.1 ± 2.1% in PB CD34 cell cultures (n = 14), comparable to immunocytochemistry data (7.8 ± 1.9% and 16.4 ± 2.6%, respectively). CD41a stained a higher proportion of MK than CD42b or CD61, while CD42b+ or CD61+ cells contained more morphologically mature MK than CD41a+ cells in cultures containing aplastic serum. When fluorescence emission of CD41a was plotted against forward‐light scatter (FSC), subpopulations of small and large MK were observed. Such subpopulations overlapped in CD41a intensity and side‐light scatter (SSC) property. Most MK co‐expressed CD45 (98.8% positive) but not CD33 (80.7% negative) or CD11b (88.9% negative). Our data indicate that flow cytometry can be used effectively to identify MK. However, caution should be taken with samples containing adherent platelets. © 1996 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.