Inflammatory mediators affect the brain during development. Neurodevelopmental disorders such as autism spectrum disorders, cognitive impairment, cerebral palsy, epilepsy, and schizophrenia have been linked to early life inflammation. Recent advances have shown the effects of systemic inflammation on children's neurodevelopment. We discuss the potential mechanisms by which inflammatory molecules can exert their effects on the developing brain and consider the roles of MHC class I molecules, the HPA axis, glial cells, and monoamine metabolism. Methods to prevent the effects of cytokine imbalance may lead to the development of new therapeutics for neuropsychiatric disorders. Future research should focus on identifying at-risk individuals and early effective interventions to prevent long-term neurodevelopmental disabilities.
Synaptic stimulation activates signal transduction pathways, producing persistently active protein kinases. PKMzeta is a truncated, persistently active isoform of atypical protein kinase C-zeta (aPKCzeta), which lacks the N-terminal pseudosubstrate regulatory domain. Using a Pavlovian olfactory learning task in Drosophila, we found that induction of the mouse aPKMzeta (MaPKMzeta) transgene enhanced memory. The enhancement required persistent kinase activity and was temporally specific, with optimal induction at 30 minutes after training. Induction also enhanced memory after massed training and corrected the memory defect of radish mutants, but did not improve memory produced by spaced training. The 'M' isoform of the Drosophila homolog of MaPKCzeta (DaPKM) was present and active in fly heads. Chelerythrine, an inhibitor of PKMzeta, and the induction of a dominant-negative MaPKMzeta transgene inhibited memory without affecting learning. Finally, induction of DaPKM after training also enhanced memory. These results show that atypical PKM is sufficient to enhance memory in Drosophila and suggest that it is necessary for normal memory maintenance.
Microglia, the tissue-resident macrophages of the central nervous system (CNS), have characterized roles in combating infection, clearing cellular debris, and maintaining tissue homeostasis. In addition to these typical immunological roles, microglia have been revealed to be active players in complex neurodevelopmental programs such as neurogenesis and synaptic pruning, during which they interact with neurons and macroglia to provide trophic support, respond to cytokine, and metabolic signals derived from the local neural environment, and drive the refinement of functional neuronal circuits. Microglia appear to be developmentally regulated by the host microbiome, and have been shown to dynamically respond to metabolic products from gut microbiota in a sex-dependent manner. Due to their constant surveillance of the brain parenchyma, involvement in development, and salient reactivity to both peripheral immune and microbiome-derived signals, microglia may additionally serve as a key cellular intermediate linking neurodevelopmental disorders such as autism and schizophrenia with microbiota influences in models of maternal immune activation (MIA). This review examines both well-established and emerging literature and perspectives on microglia in the context of neurodevelopment, with a particular emphasis on the role of the host microbiome in influencing microglial function during health and disease states.
It is of great interest to understand how invading pathogens are sensed within the brain, a tissue with unique challenges to mounting an immune response. The eukaryotic parasite Toxoplasma gondii colonizes the brain of its hosts, and initiates robust immune cell recruitment, but little is known about pattern recognition of T. gondii within brain tissue. The host damage signal IL-33 is one protein that has been implicated in control of chronic T. gondii infection, but, like many other pattern recognition pathways, IL-33 can signal peripherally, and the specific impact of IL-33 signaling within the brain is unclear. Here, we show that IL-33 is expressed by oligodendrocytes and astrocytes during T. gondii infection, is released locally into the cerebrospinal fluid of T. gondii-infected animals, and is required for control of infection. IL-33 signaling promotes chemokine expression within brain tissue and is required for the recruitment and/or maintenance of blood-derived anti-parasitic immune cells, including proliferating, IFN-γ-expressing T cells and iNOS-expressing monocytes. Importantly, we find that the beneficial effects of IL-33 during chronic infection are not a result of signaling on infiltrating immune cells, but rather on radio-resistant responders, and specifically, astrocytes. Mice with IL-33 receptor-deficient astrocytes fail to mount an adequate adaptive immune response in the CNS to control parasite burden–demonstrating, genetically, that astrocytes can directly respond to IL-33 in vivo. Together, these results indicate a brain-specific mechanism by which IL-33 is released locally, and sensed locally, to engage the peripheral immune system in controlling a pathogen.
SUMMARY 21An intact immune response is critical for survival of hosts chronically infected with 22Toxoplasma gondii. We observe clusters of macrophages surrounding replicating parasite in brain
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.