Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and A. parasiticus. Aflatoxins are synthesized by condensation of acetate units; their synthesis is estimated to involve at least 16 different enzymes. In this study we have shown that at least nine genes involved in the aflatoxin biosynthetic pathway are located within a 60-kb DNA fragment. Four of these genes, nor-1, aflR, ver-1, and omtA (previously named omt-1), have been cloned in A. flavus and A. parasiticus. In addition, five other genes, pksA, uvm8, aad, ord-1, and ord-2 have been recently cloned in A. parasiticus. The pksA, aad, and uvm8 genes exhibit sequence homologies to polyketide synthase, aryl-alcohol dehydrogenase, and fatty acid synthase genes, respectively. The cDNA sequences of ord-1 and ord-2 genes, which may be involved in later steps of aflatoxin biosynthesis, have been determined; the ord-1 gene product exhibits homology to cytochrome P-450-type enzymes. By characterizing the overlapping regions of the DNA inserts in different cosmid and lambda DNA clones, we have determined the order of these aflatoxin pathway genes within this 60-kb DNA region to be pksA, nor-1, uvm8, aflR, aad, ver-1, ord-1, ord-2, and omtA in A. parasiticus and nor-1, aflR, ver-1, ord-1, ord-2, and omtA in A. flavus. The order is related to the order in enzymatic steps required for aflatoxin biosynthesis. The physical distances (in kilobase pairs) and the directions of transcription of these genes have been determined for both aflatoxigenic species.
An Aspergillus parasiticus cDNA library was screened with monoclonal antibody raised against a purified A. parasiticus 43-kDa protein demonstrating norsolorinic acid reductase (NOR) activity. One immunopositive clone contained a cDNA insert of 1,418 bp. DNA sequence analysis of this cDNA identified an open reading frame of 1,167 bp that represented the norA gene. The deduced amino acid sequence of the norA coding region consisted of 388 residues capable of encoding a polypeptide of 43.7 kDa. Southern blot analysis of genomic DNA from A. parasiticus indicated that there may be an additional copy of norA. Western blot (immunoblot) analysis of crude protein extracts of A. parasiticus mycelia demonstrated a band of reactivity at 43 kDa only when the fungus was grown in a medium conducive to aflatoxin biosynthesis. Northern (RNA) blot analysis of total RNA from the fungus demonstrated a band of hybridization at about 1.5 kb. As observed with the fungal NORA protein, the norA transcript was present only when the fungus was grown in medium conducive to aflatoxin biosynthesis. Hybridization of the norA cDNA with cosmid DNAs known to encompass a major portion of the A. parasiticus and Aspergillus flavus aflatoxin biosynthetic pathway gene cluster placed the norA gene coding region just upstream of the ver-1 gene. The deduced amino acid sequence of norA had 49% amino acid identity with that of an aryl-alcohol dehydrogenase (aad) gene from Phanerochaete chrysosporium.
Alates of the Formosan subterranean termite, Coptotermes formosanus Shiraki, collected after swarming in 2002 died within 48 h, and the cadavers were visibly infected with a fungus. Fungi were picked from the cadavers, transferred to media, and ultimately isolated to purity. The individual fungal cultures were then used to infect Formosan subterranean termite workers. A single fungal isolate, C4-B, taxonomically identified as Metarhizium anisopliae (Metschnikoff), was found to cause rapid mortality of Formosan subterranean termite alates. This is the first report of a biological control agent for termite alates. In initial experiments, C4-B was more lethal to both alates and workers compared with M. anisopliae strain ESC 1, previously marketed as the termite biocontrol agent BioBlast. Dose-response assays in which Formosan subterranean termite alates were exposed to a known concentration of C4-B spores revealed that 10(6) spores/microl killed 100% of the alates in 3 d, both 10(5) and 10(4) spores/microl in 6 d, 10(3) spores/microl in 9 d, and 10(0) spores/microl in 12 d. Assays with workers demonstrated that 10(6) and 10(5) spores/microl killed 100% of the workers in 6 d. In an experiment to test the transfer of inoculum from infected workers to uninfected nestmates, 62.8% of the workers died in 21 d when only 20% of the workers had been inoculated. Mortality of alates caused by C4-B was tested at two field sites by dispersing fungal spores on grassy lawns and collecting alates from the treated areas. Alates thus infected showed 100% mortality by day 5, whereas only 64.8% of untreated control alates from the same collection area were dead on that day.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.