SummaryIn several large recent observational studies, peripheral arterial disease (PAD) was present in up to 50% of the patients with a diabetic foot ulcer and was an independent risk factor for amputation. The International Working Group on the Diabetic Foot therefore established a multidisciplinary working group to evaluate the effectiveness of revascularization of the ulcerated foot in patients with diabetes and PAD. A systematic search was performed for therapies to revascularize the ulcerated foot in patients with diabetes and PAD from 1980-June 2010. Only clinically relevant outcomes were assessed. The research conformed to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, and the Scottish Intercollegiate Guidelines Network methodological scores were assigned. A total of 49 papers were eligible for full text review. There were no randomized controlled trials, but there were three nonrandomized studies with a control group. The major outcomes following endovascular or open bypass surgery were broadly similar among the studies. Following open surgery, the 1-year limb salvage rates were a median of 85% (interquartile range of 80-90%), and following endovascular revascularization, these rates were 78% (70.5-85.5%). At 1-year follow-up, 60% or more of ulcers had healed following revascularization with either open bypass surgery or endovascular revascularization. Studies appeared to demonstrate improved rates of limb salvage associated with revascularization compared with the results of medically treated patients in the literature. There were insufficient data to recommend one method of revascularization over another. There is a real need for standardized reporting of baseline demographic data, severity of disease and outcome reporting in this group of patients.
SummaryBackgroundStents are an alternative treatment to carotid endarterectomy for symptomatic carotid stenosis, but previous trials have not established equivalent safety and efficacy. We compared the safety of carotid artery stenting with that of carotid endarterectomy.MethodsThe International Carotid Stenting Study (ICSS) is a multicentre, international, randomised controlled trial with blinded adjudication of outcomes. Patients with recently symptomatic carotid artery stenosis were randomly assigned in a 1:1 ratio to receive carotid artery stenting or carotid endarterectomy. Randomisation was by telephone call or fax to a central computerised service and was stratified by centre with minimisation for sex, age, contralateral occlusion, and side of the randomised artery. Patients and investigators were not masked to treatment assignment. Patients were followed up by independent clinicians not directly involved in delivering the randomised treatment. The primary outcome measure of the trial is the 3-year rate of fatal or disabling stroke in any territory, which has not been analysed yet. The main outcome measure for the interim safety analysis was the 120-day rate of stroke, death, or procedural myocardial infarction. Analysis was by intention to treat (ITT). This study is registered, number ISRCTN25337470.FindingsThe trial enrolled 1713 patients (stenting group, n=855; endarterectomy group, n=858). Two patients in the stenting group and one in the endarterectomy group withdrew immediately after randomisation, and were not included in the ITT analysis. Between randomisation and 120 days, there were 34 (Kaplan-Meier estimate 4·0%) events of disabling stroke or death in the stenting group compared with 27 (3·2%) events in the endarterectomy group (hazard ratio [HR] 1·28, 95% CI 0·77–2·11). The incidence of stroke, death, or procedural myocardial infarction was 8·5% in the stenting group compared with 5·2% in the endarterectomy group (72 vs 44 events; HR 1·69, 1·16–2·45, p=0·006). Risks of any stroke (65 vs 35 events; HR 1·92, 1·27–2·89) and all-cause death (19 vs seven events; HR 2·76, 1·16–6·56) were higher in the stenting group than in the endarterectomy group. Three procedural myocardial infarctions were recorded in the stenting group, all of which were fatal, compared with four, all non-fatal, in the endarterectomy group. There was one event of cranial nerve palsy in the stenting group compared with 45 in the endarterectomy group. There were also fewer haematomas of any severity in the stenting group than in the endarterectomy group (31 vs 50 events; p=0·0197).InterpretationCompletion of long-term follow-up is needed to establish the efficacy of carotid artery stenting compared with endarterectomy. In the meantime, carotid endarterectomy should remain the treatment of choice for patients suitable for surgery.FundingMedical Research Council, the Stroke Association, Sanofi-Synthélabo, European Union.
Amphoterin (HMGB1) is a 30-kD heparinbinding protein involved in process extension and migration of cells by a mechanism involving the receptor for advanced glycation end products (RAGE). High levels of amphoterin are released to serum during septic shock. We have studied the expression of amphoterin in monocytes and the role of amphoterin and RAGE in monocyte transendothelial migration. Unactivated monocytes in suspension did not reveal amphoterin on their surface, but adherent monocytes exported amphoterin to the cell surface. Immunohistochemical staining of arterial thrombi in vivo revealed amphoterin in mononuclear cells and in surrounding extracellular matrix. Amphoterin was secreted from phorbol ester and interferon-␥ (IFN-␥)-activated macrophages, and the secretion was inhibited by blocking the adenosine 5-triphosphate (ATP)-binding cassette transporter-1, a member of the multidrug resistance protein family. Amphoterin was specifically adhesive for monocytes in peripheral blood leukocyte adhesion assay. Adhesion caused an extensive spreading of cells, which was inhibited by the dominant-negative RAGE receptor (soluble ectodomain of RAGE), and adhesion up-regulated chromogranin expression in monocytes, also suggesting a RAGE-dependent interaction. Monocyte transendothelial migration was efficiently inhibited by anti-amphoterin and anti-RAGE antibodies and by the soluble RAGE. We suggest that amphoterin is an autocrine/paracrine regulator of monocyte invasion through the endothelium. IntroductionCirculating monocytes adhere to sites of vascular injury where they participate together with other cells in the regulation of blood clotting, inflammation, and wound healing. Adhesion to other cells and extracellular matrix components is a prerequisite for migration and tissue recruitment of monocytes. 1,2 The knowledge of molecules involved in monocyte transendothelial migration is rapidly increasing. However, the overall picture of the transendothelial migration mechanism is not completely understood. 2 Amphoterin is a 30-kD heparin-binding protein widely expressed in humans and other organisms, and it is abundantly expressed in the developing brain as well as in various immature and transformed cell lines. [3][4][5][6] It was isolated as an extracellular neurite outgrowth-promoting protein, but its amino acid sequence turned out to be identical to high-mobility groupϪ1 protein. 5,7 In a new nomenclature of high-mobility group proteins amphoterin and other proteins identical in the cDNA sequence are called as HMGB1 (high-mobility group B-1). 8 We have used the designation amphoterin for the protein occurring in the extracellular space and interacting with the cell surface. 5 Surface-bound amphoterin is adhesive for neural cells and platelets, and it induces extension of membrane processes in adherent cells. 3,9,10 Amphoterin binds to plasma membrane lipids, mainly to phosphatidylserine and sulfatide, and enhances and localizes plasminogen activation. 6,9,[11][12][13] In neurons, neurite outgrowth on amphoterin s...
Attaining a direct arterial flow based on the angiosome model of perfusion to the foot ulcer appears to be important for ulcer healing in diabetic patients.
Ulcerated diabetic foot is a complex problem. Ischaemia, neuropathy and infection are the three pathological components that lead to diabetic foot complications, and they frequently occur together as an aetiologic triad. Neuropathy and ischaemia are the initiating factors, most often together as neuroischaemia, whereas infection is mostly a consequence. The role of peripheral arterial disease in diabetic foot has long been underestimated as typical ischaemic symptoms are less frequent in diabetics with ischaemia than in non-diabetics. Furthermore, the healing of a neuroischaemic ulcer is hampered by microvascular dysfunction. Therefore, the threshold for revascularising neuroischaemic ulcers should be lower than that for purely ischaemic ulcers. Previous guidelines have largely ignored these specific demands related to ulcerated neuroischaemic diabetic feet. Any diabetic foot ulcer should always be considered to have vascular impairment unless otherwise proven. Early referral, non-invasive vascular testing, imaging and intervention are crucial to improve diabetic foot ulcer healing and to prevent amputation. Timing is essential, as the window of opportunity to heal the ulcer and save the leg is easily missed. This chapter underlines the paucity of data on the best way to diagnose and treat these diabetic patients. Most of the studies dealing with neuroischaemic diabetic feet are not comparable in terms of patient populations, interventions or outcome. Therefore, there is an urgent need for a paradigm shift in diabetic foot care; that is, a new approach and classification of diabetics with vascular impairment in regard to clinical practice and research. A multidisciplinary approach needs to implemented systematically with a vascular surgeon as an integrated member. New strategies must be developed and implemented for diabetic foot patients with vascular impairment, to improve healing, to speed up healing rate and to avoid amputation, irrespective of the intervention technology chosen. Focused studies on the value of predictive tests, new treatment modalities as well as selective and targeted strategies are needed. As specific data on ulcerated neuroischaemic diabetic feet are scarce, recommendations are often of low grade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.