Using high-resolution Fourier-transform infrared absorbance and transmittance spectral data for ammonium sulfate (AMS), calcium carbonate (CAC), and ammonium nitrate (AMN), we made comparisons with previously published complex reactive-index data for AMS and CAC to infer experimental parameters to determine the imaginary refractive index for AMN in the infrared wavelength range from 2 to 20 microm. Subtractive Kramers-Kronig mathematical relations were applied to calculate the real refractive index for the three compositions. Excellent agreement for AMS and CAC with the published values was found, validating the complex refractive index obtained for AMN. We performed backscatter calculations using a log-normal size distribution for AMS, AMN, and CAC aerosols to show differences in their backscattered spectra.
Aerosol-induced loser breakdown thresholds have been measured for liquid droplets at wavelengths lambda= 1.064, 0.532, 0.355, 0.266 microm using a Nd:YAG laser with 5-10-ns pulse duration. Breakdown thresholds are 2-3 orders of magnitude below those for clean air and range from 4 x 10(7) to 3 x 10(9) W cm(-2) for nominal 50-microm diam droplets, depending on laser wavelength and droplet composition. Thresholds decrease with decreasing wavelength; they also decrease for droplets having a higher real refractive index. For water droplets the breakdown threshold intensity varies approximately as lambda(0.5). The wavelength dependence of breakdown thresholds can be qualitatively explained by considering (1) the effect of enhancement of internal fields and energy density within and near droplets and (2) the increasing importance of multiphoton absorption processes at shorter wavelengths. Laser transmission losses through the breakdown plasma and observations of the suppression of stimulated Raman scattering by the addition of small quantitites of absorbing material to water and carbon tetrachloride droplets are also reported.
Laser-induced breakdown threshold intensities for helium, argon, xenon and clean air were measured as a function of pressure (p < 900 Torr) at wavelength lambda = 0.532 microm using the Nd:YAG laser with 6.5-ns pulse duration. Pressure dependence of the breakdown of a 50-microm diam water droplet in these gases was also investigated. For pure gases, different free electron generation processes and electron loss processes dominate in different pressure regions. The water droplets decrease the breakdown thresholds up to 3 orders of magnitude depending on the pressure of the particular gas surrounding the droplet. For the droplet in He, Ar, and clean air for p < 800 Torr, the breakdown at the threshold intensity occurs inside the droplet and is independent of pressure. For the droplet in Xe, the breakdown occurs inside the droplet for p < 140 Torr; however, for p < 140 Torr, the breakdown occurs outside the droplet and is dependent on pressure. Transition from the breakdown inside to outside the droplet takes place in the pressure region where the breakdown thresholds of the bulk liquid and the pure gas are approximately equal.
An aerosol microphysics dataset was used to model backscatter in the 0.35-11-mum wavelength range, with the results validated by comparison with measured cw and pulsed lidar backscatter obtained during two NASA-sponsored airborne field experiments. Different atmospheric features were encountered, with aerosol backscatter ranging over 4 orders of magnitude. Modeled conversion functions were used to convert existing lidar backscatter datasets to 2.1 mum. Resulting statistical distribution shows the midtropospheric aerosol backscatter background mode of beta(2.1) to be between ~3.0 x 10(-10) and ~1.3 x 10(-9) m(-1) sr(-1), ~10-20 times higher than that for beta(9.1); and a beta(2.1) boundary layer mode of ~1.0 x 10(-7) to ~1.3 x 10(-6) m(-1) sr(-1), ~3-5 times higher than beta(9.1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.