An electrophilic cyanation of aryl Grignard or lithium reagents, generated in situ from the corresponding aryl bromides or iodides, by a transnitrilation with dimethylmalononitrile (DMMN) was developed. DMMN is a commercially available, bench-stable solid. The transnitrilation with DMMN avoids the use of toxic reagents and transition metals and occurs under mild reaction conditions, even for extremely sterically hindered substrates. The transnitrilation of aryllithium species generated by directed ortho-lithiation enabled a net C-H cyanation. The intermediacy of a Thorpe-type imine adduct in the reaction was supported by isolation of the corresponding ketone from the quenched reaction. Computational studies supported the energetic favorability of retro-Thorpe fragmentation of the imine adduct.
Tris(2,2,2-trifluoroethyl)borate [B(OCH2CF3)3] was found to be a mild and general reagent for the formation of a variety of imines by condensation of amides or amines with carbonyl compounds. N-Sulfinyl, N-toluenesulfonyl, N-(dimethylamino)sulfamoyl, N-diphenylphosphinoyl, N-(α-methylbenzyl), and N-(4-methoxyphenyl) aldimines are all accessible using this reagent at room temperature. The reactions are operationally simple, and the products are obtained without special workup or isolation procedures.
Carbamoyl anions, generated from N,N-disubstituted formamides and lithium diisopropylamide, add with high diastereoselectivity to chiral N-sulfinyl aldimines and ketimines to provide α-amino amides. The methodology enables the direct introduction of a carbonyl group without the requirement of unmasking steps as with other nucleophiles. The products may be converted to α-amino esters or 1,2-diamines. Iterative application of the reaction enabled the stereoselective synthesis of a dipeptide. Spectroscopic and computational studies support an anion structure with η(2) coordination of lithium by the carbonyl group.
A mild and general procedure for reduction of primary, secondary, and tertiary amides using catalytic triruthenium dodecacarbonyl and 1,1,3,3-tetramethyldisiloxane as reductant is described. The reaction is tolerant of numerous functional groups, and the amine products can often be isolated by direct crystallization as hydrochloride salts. The catalyst and silane are commercially available, air stable, and inexpensive, making the procedure accessible for both laboratory and large-scale applications.
A concise asymmetric synthesis of an 11β-HSD-1 inhibitor has been achieved using inexpensive starting materials with excellent step-economy at low catalyst loadings. The catalytic enantioselective total synthesis of 1 was accomplished in 7 steps and 38% overall yield aided by the development of an innovative, sequential strategy involving Pd-catalyzed pyridinium C–H arylation and Ir-catalyzed asymmetric hydrogenation of the resulting fused tricyclic indenopyridinium salt highlighted by the use of a unique P,N-ligand (MeO-BoQPhos) with 1000 ppm of [Ir(COD)Cl]2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.