We assessed the relative importance of environmental variation, interspecific competition for space, and predator abundance on assemblage structure and microhabitat use in a stream fish assemblage inhabiting Coweeta Creek, North Carolina, USA. Our study encompassed a 10–yr time span (1983–1992) and included some of the highest and lowest flows in the last 58 years. We collected 16 seasonal samples which included data on: (1) habitat availability (total and microhabitat) and microhabitat diversity, (2) assemblage structure (i.e., the number and abundances of species comprising a subset of the community), and (3) microhabitat use and overlap. We classified habitat availability data on the basis of year, season, and hydrologic period. Hydrologic period (i.e., pre–drought [PR], drought [D], and post–drought [PO]) represented the temporal location of a sample with respect to a four–year drought that occurred during the study. Hydrologic period explained a greater amount of variance in habitat availability data than either season or year. Total habitat availability was significantly greater during PO than in PR or D, although microhabitat diversity did not differ among either seasons or hydrologic periods. There were significantly fewer high–flow events (i.e., ≥2.1 m3/s) during D than in either PR or PO periods. We observed a total of 16 species during our investigation, and the total number of species was significantly higher in D than in PR samples. Correlation analyses between the number of species present (total and abundant species) and environmental data yielded limited results, although the total number of species was inversely correlated with total habitat availability. A cluster analysis grouped assemblage structure samples by hydrologic period rather than season or year, supporting the contention that variation in annual flow had a strong impact on this assemblage. The drought had little effect on the numerical abundance of benthic species in this assemblage; however, a majority of water–column species increased in abundance. The increased abundances of water–column species may have been related to the decrease in high‐flow events observed during the drought. Such high–flow events are known to cause mortality in stream fishes. Microhabitat use data showed that species belonged to one of three microhabitat guilds: benthic, lower water column, and mid water column. In general, species within the same guild did not exhibit statistically distinguishable patterns of microhabitat use, and most significant differences occurred between members of different guilds. However, lower water–column guild species frequentlywere not separable from all members of either benthic or mid–water–column species. Variations in the abundance of potential competitors or predators did not produce strong shifts in microhabitat use by assemblage members. Predators were present in the site in only 9 of 16 seasonal samples and never were abundant (maximum number observed per day was 2). In conclusion, our results demonstrate that variability...
ABSTRACT/We quantified the stability of nine stream fish assemblages by calculating coefficients of variation of population size for assemblage members. Coefficients of variation were high and averaged over 96%; indicating that most assemblages were quite variable. Coefficient of variation (CV) estimates were not significantly affected by: (1) years of study, (2) mean abundance, (3) familial classification, or (4) mean interval between collections. We also detected minor regional differences in CVs. The high variability exhibited by many stream fish assemblages suggests that it may be difficult to detect the effects of anthropogenic disturbances using population data alone. Consequently, we urge managers to exercise caution in the evaluation of the effects of these disturbances. More long-term studies of the ecological characteristics of undisturbed stream fish assemblages are needed to provide a benchmark against which disturbed systems can be compared.We suggest that CVs are a better estimator of population/assemblage stability, than either Kendall's W or the standard deviation of the logarithms of numerical censuses. This conclusion is based on the following reasons. First, CVs scale population variation by the mean and, hence, more accurately measure population variability. Second, this scaling permits the comparison of populations with different mean abundances. Finally, the interpretation of CV values is less ambiguous than either of the aforementioned metrics.Annual and season variations in flow regimes (i.e., droughts and floods) can produce substantial fluctuations in the physical environment of many lotic ecosystems. Because droughts and floods occur with a relatively high frequency, especially when compared to many other natural disturbances (e.g., E1 Nifio, hurricanes), iotic environments are excellent systems for tests of equilibrium and nonequilibrium ecological theories. Implicit tests of such theories occurred as early as 1951, when William Starrett (1951) observed large variations in species abundances in an Iowa riverine fish assemblage and attributed these variations to unpredictable hydrologic events. Similar results were obtained by later researchers (Larimore 1954, Metcalf 1959, Paloumupis 1958, Larimore and others 1959, John 1964, Lowe and others 1967, Rinne 1975, Harrell and others 1967, Harrell 1978, Mills and Mann 1985, Moyle and Li 1979.Prompted by the general ecological debate regarding the importance of equilibrium and nonequilibrium processes to assemblage dynamics, Grossman and others (1982) reviewed the literature on stream systems. This review, coupled with a reanalysis of assemblage structure data from an Indiana stream, led them to reiterate Starrett's hypothesis and suggest that hydrologic variability may facilitate coexistence in assemblages of many stream organisms. The proposed
In this study we used pinfish (Lagodon rhomboides) in field experiments to examine linkages between intertidal saltmarsh and adjacent subtidal habitats. Pinfish are more than twice as abundant in intertidal marshes adjacent to seagrass beds than in those adjacent to the unvegetated subtidal bottom. Movement of pinfish between the marsh edge and the adjacent subtidal habitat was greater for fish captured in areas with both intertidal and subtidal vegetation than in those with intertidal vegetation and adjacent unvegetated mudflats. This movement provides an important link between habitats, allowing transfer of marsh-derived secondary production to subtidal seagrass beds and vice versa. Pinfish held in enclosures with both intertidal and subtidal vegetation were, on average, approximately 90% heavier than fish held in enclosures with intertidal vegetation and unvegetated subtidal bottom. Because saltmarshes and seagrass beds contribute to the production of living marine resources, active measures are being taken to preserve and restore these habitats. The results from this study have direct application to decisions concerning site selection and optimal spatial proximity of saltmarsh and seagrass habitats in the planning of restoration and mitigation projects. To maximize secondary production and utilization of intertidal marshes, managers may opt to restore and/or preserve marshes adjacent to subtidal seagrass beds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.