A mathematical inertia model which permits the determination of personalized segmental inertia parameter values from anthropometric measurements is described. The human body is modelled using 40 geometric solids which are specified by 95 anthropometric measurements. A 'stadium' solid is introduced for modelling the torso segments using perimeter and width measurements. This procedure is more accurate than the use of elliptical discs of given width and depth and permits a smaller number of such solids to be used. Inertia parameter values may be obtained for body models of up to 20 segments. Errors in total body mass estimates from this and other models are discussed with reference to the unknown lung volumes.
The selection of an appropriate and/or standardized method for representing 3-D joint attitude and motion is a topic of popular debate in the field of biomechanics. The joint coordinate system (JCS) is one method that has seen considerable use in the literature. The JCS consists of an axis fixed in the proximal segment, an axis fixed in the distal segment, and a "floating" axis. There has not been general agreement in the literature on how to select the body fixed axes of the JCS. The purpose of this paper is to propose a single definition of the body fixed axes of the JCS. The two most commonly used sets of body fixed axes are compared and the differences between them quantified. These differences are shown to be relevant in terms of practical applications of the JCS. Argumentation is provided to support a proposal for a standardized selection of body fixed axes of the JCS consisting of the axis ê1 embedded in the proximal segment and chosen to represent flexion-extension, the "floating" axis ê2 chosen to represent ad-abduction, and the axis ê3 embedded in the distal segment and chosen to represent axial rotation of that segment. The algorithms for the JCS are then documented using generalized terminology.
The purpose of this paper is to discuss some biomechanical aspects of playing surfaces with special focus on (a) surface induced injuries, (b) methodologies used to assess surfaces and (c) findings from various sports. The paper concentrates primarily on questions related to load on the athlete's body. Data from epidemiological studies suggest strongly that the surface is an important factor in the aetiology of injuries. Injury frequencies are reported to be significantly different for different surfaces in several sports. The methodologies used to assess surfaces with respect to load or performance include material tests and tests using experimental subjects. There is only little correlation between the results of these two approaches. Material tests used in many standardized test procedures are not validated which suggests that one should exercise restraint in the interpretation of these results. Point elastic surfaces are widely studied while area elastic surfaces have received little attention to date. Questions of energy losses on sport surfaces have rarely been studied scientifically.
A computer simulation model of human airborne movement is described. The body is modelled as 11 rigid linked segments with 17 degrees of freedom which are chosen with a view to modelling twisting somersaults. The accuracy of the model is evaluated by comparing the simulation values of the angles describing somersault, tilt and twist with the corresponding values obtained from film data of nine twisting somersaults. The maximum deviations between simulation and film are found to be 0.04 revolutions for somersault, seven degrees for tilt and 0.12 revolutions for twist. It is shown that anthropometric measurement errors, from which segmental inertia parameters are calculated, have a small effect on a simulation, whereas film digitization errors can account for a substantial part of the deviation between simulation and film values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.