PurposeTo investigate the potential of diffusion tensor imaging (DTI) parameters as in-vivo biomarkers of axon and myelin sheath integrity of the median nerve in the carpal tunnel as validated by correlation with electrophysiology.MethodsMRI examinations at 3T including DTI were conducted on wrists in 30 healthy subjects. After manual segmentation of the median nerve quantitative analysis of fractional anisotropy (FA) as well as axial, radial and mean diffusivity (AD, RD, and MD) was carried out. Pairwise Pearson correlations with electrophysiological parameters comprising sensory nerve action potential (SNAP) and compound muscle action potential (CMAP) as markers of axon integrity, and distal motor latency (dml) and sensory nerve conduction velocity (sNCV) as markers of myelin sheath integrity were computed. The significance criterion was set at P=0.05, Bonferroni corrected for multiple comparisons.ResultsDTI parameters showed a distinct proximal-to-distal profile with FA, MD, and RD extrema coinciding in the center of the carpal tunnel. AD correlated with CMAP (r=0.50, p=0.04, Bonf. corr.) but not with markers of myelin sheath integrity. RD correlated with sNCV (r=-0.53, p=0.02, Bonf. corr.) but not with markers of axon integrity. FA correlated with dml (r=-0.63, p=0.002, Bonf. corr.) and sNCV (r=0.68, p=0.001, Bonf. corr.) but not with markers of axon integrity.ConclusionAD reflects axon integrity, while RD (and FA) reflect myelin sheath integrity as validated by correlation with electrophysiology. DTI parameters consistently indicate a slight decrease of structural integrity in the carpal tunnel as a physiological site of median nerve entrapment. DTI is particularly sensitive, since these findings are observed in healthy participants. Our results encourage future studies to evaluate the potential of DTI in differentiating axon from myelin sheath injury in patients with manifest peripheral neuropathies.
FA maps can accurately depict even mild peripheral neuropathy and perform better than the current standard of reference, T2-weighted images. DTI may therefore add diagnostic value as a highly sensitive technique for the detection of peripheral neuropathy.
PurposePatients with ulnar neuropathy of unclear etiology occasionally present with lesion extension from elbow to upper arm level on MRI. This study investigated whether MRI thereby distinguishes multifocal neuropathy from focal-compressive neuropathy at the elbow.MethodsThis prospective study was approved by the institutional ethics committee and written informed consent was obtained from all participants. 122 patients with ulnar mononeuropathy of undetermined localization and etiology by clinical and electrophysiological examination were assessed by MRI at upper arm and elbow level using T2-weighted fat-saturated sequences at 3T. Twenty-one patients were identified with proximal ulnar nerve lesions and evaluated for findings suggestive of disseminated neuropathy (i) subclinical lesions in other nerves, (ii) unfavorable outcome after previous decompressive elbow surgery, and (iii) subsequent diagnosis of inflammatory or other disseminated neuropathy. Two groups served as controls for quantitative analysis of nerve-to-muscle signal intensity ratios: 20 subjects with typical focal ulnar neuropathy at the elbow and 20 healthy subjects.ResultsIn the group of 21 patients with proximal ulnar nerve lesion extension, T2-w ulnar nerve signal was significantly (p<0.001) higher at upper arm level than in both control groups. A cut-off value of 1.92 for maximum nerve-to-muscle signal intensity ratio was found to be sensitive (86%) and specific (100%) to discriminate this group. Ten patients (48%) exhibited additional T2-w lesions in the median and/or radial nerve. Another ten (48%) had previously undergone elbow surgery without satisfying outcome. Clinical follow-up was available in 15 (71%) and revealed definitive diagnoses of multifocal neuropathy of various etiologies in four patients. In another eight, diagnoses could not yet be considered definitive but were consistent with multifocal neuropathy.ConclusionProximal ulnar nerve T2 lesions at upper arm level are detected by MRI and indicate the presence of a non-focal disseminated neuropathy instead of a focal compressive neuropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.