When used as decision support, interactive use of CAD for malignant masses on mammograms may be more effective than the current use of CAD, which is aimed at the prevention of perceptual oversights.
Objective:To evaluate an interactive computer-aided detection (CAD) system for reading mammograms to improve decision making.Methods:A dedicated mammographic workstation has been developed in which readers can probe image locations for the presence of CAD information. If present, CAD findings are displayed with the computed malignancy rating. A reader study was conducted in which four screening radiologists and five non-radiologists participated to study the effect of this system on detection performance. The participants read 120 cases of which 40 cases had a malignant mass that was missed at the original screening. The readers read each mammogram both with and without CAD in separate sessions. Each reader reported localized findings and assigned a malignancy score per finding. Mean sensitivity was computed in an interval of false-positive fractions less than 10%.Results:Mean sensitivity was 25.1% in the sessions without CAD and 34.8% in the CAD-assisted sessions. The increase in detection performance was significant (p = 0.012). Average reading time was 84.7 ± 61.5 s/case in the unaided sessions and was not significantly higher when interactive CAD was used (85.9 ± 57.8 s/case).Conclusion:Interactive use of CAD in mammography may be more effective than traditional CAD for improving mass detection without affecting reading time.
When reading mammograms, radiologists combine information from multiple views to detect abnormalities. Most computer-aided detection (CAD) systems, however, use primitive methods for inclusion of multiview context or analyze each view independently. In previous research it was found that in mammography lesion-based detection performance of CAD systems can be improved when correspondences between MLO and CC views are taken into account. However, detection at case level detection did not improve. In this paper, we propose a new learning method for multiview CAD systems, which is aimed at optimizing case-based detection performance. The method builds on a single-view lesion detection system and a correspondence classifier. The latter provides class probabilities for the various types of region pairs and correspondence features. The correspondence classifier output is used to bias the selection of training patterns for a multiview CAD system. In this way training can be forced to focus on optimization of case-based detection performance. The method is applied to the problem of detecting malignant masses and architectural distortions. Experiments involve 454 mammograms consisting of four views with a malignant region visible in at least one of the views. To evaluate performance, five-fold cross validation and FROC analysis was performed. Bootstrapping was used for statistical analysis. A significant increase of case-based detection performance was found when the proposed method was used. Mean sensitivity increased by 4.7% in the range of 0.01-0.5 false positives per image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.