Given a correspondence X over a C * -algebra A, we construct a C * -algebra A X ∞ and a Hilbert C * -bimodule X∞ over A X ∞ such that the augmented Cuntz-Pimsner C * -algebras ÕX and the crossed product A X ∞ ⋊X∞ are isomorphic. This construction enables us to establish a condition for two augmented Cuntz-Pimsner C * -algebras to be Morita equivalent.
We study expansive dynamical systems from the viewpoint of general topology. We introduce the notions of orbit and refinement expansivity on topological spaces extending expansivity in the compact metric setting. Examples are given on non-Hausdorff compact spaces. Topological properties are studied in relation to separability axioms, metrizability and uniform expansivity.
For an α-expansive homeomorphism of a compact space we give an elementary proof of the following well-known result in topological dynamics: A sufficient condition for the homeomorphism to have the shadowing property is that it has the α-shadowing property for one-jump pseudo orbits (known as the local product structure property). The proof relies on a reformulation of the property of expansiveness in terms of the pseudo orbits of the system.
L'accès aux articles de la revue « Annales de la faculté des sciences de Toulouse Mathématiques » (http://afst.centre-mersenne.org/), implique l'accord avec les conditions générales d'utilisation (http://afst. centre-mersenne.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.centre-mersenne.org/ Annales de la faculté des sciences de Toulouse Volume XXIX, n o 2, 2020 pp. 221-246 New cw-expansive homeomorphisms of surfaces (*) M. Achigar (1) , A. Artigue (2) and J. Vieitez (3) ABSTRACT.-In this article we characterize monotone extensions of cw-expansive homeomorphisms of compact metric spaces. For this purpose we introduce the notion "half cw-expansivity" and we study its natural quotient space, specially in the case of compact surfaces. These results are applied to construct new examples of cwexpansive homeomorphisms of compact surfaces with infinitely many fixed points and empty wandering set. These examples are quotients of topological perturbations of pseudo-Anosov diffeomorphisms. We also show that there is a cw-expansive homeomorphism with the shadowing property of the 2-sphere. RÉSUMÉ.-Dans ce travail on caractérise les extensions monotones d'homéomorphismes cw-expansifs d'espaces métriques compacts. Pour faire cela, on introduit la notion de "demi cw-expansivité" et on étudie son espace quotient naturel, notament dans le cas de surfaces compactes. On utilise ses résultats pour construire des exemples nouveaux d'homomémorphismes cw-expansifs avec un nombre infini de points fixes et dont l'ensemble errant est vide, dans le cadre des surfaces. Ces exemples sont des quotients de perturbations topologiques de pseudo-Anosov diffeomorphismes. Nous montrons également qu'il existe un homéomorphisme cw-expansif du 2-sphère avec la propriété shadowing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.