Interfacial interactions can play an important role in the glass transition temperature (Tg) and relaxation dynamics of ultra-thin glass polymer films. We have recently shown that similar to the polymeric systems in ultra-thin molecular glass films of N, N′-Bis(3-methylphenyl)-N, N′-diphenylbenzidine (TPD), the Tg is reduced and dynamics are enhanced. Furthermore, in molecular glass systems, as the film thickness is reduced below ∼30 nm, the dynamics at the two interfaces correlate such that the range of the gradients in the dynamics induced by the free surface narrows compared to thicker films. These observations indicate that the dynamics of the glassy thin films are strongly correlated and cannot be explained by a simple two-layer model consisting of a bulk and a thin interfacial layer with a constant thickness and constant range of dynamical gradients. Here, we investigate the effect of film/substrate interactions on the film dynamics by varying the TPD/substrate interfacial interactions. We show that thin TPD films with thicknesses below ∼60 nm show a smaller extent of Tg reduction and enhanced dynamics when supported on a near-neutral substrate (wetting) compared to a weakly interacting (dewetting) substrate. However, the ∼30 nm length scale, where the activation energy significantly reduces from its bulk value as measured by the onset of the glass transition remains unchanged. Coarse-grained molecular dynamics simulation also shows a narrowing in the range of relaxation times once the thickness is sufficiently reduced for the two interfaces to dynamically correlate, consistent with previous work. These results suggest that the length-scale for the correlated dynamics is independent of interfacial interactions and the polymeric nature of the film and may originate from the bulk glass properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.