Modern GPUs are true power houses in every meaning of the word: While they offer general-purpose (GPGPU) compute performance an order of magnitude higher than that of conventional CPUs, they have also been rapidly approaching the infamous "power wall", as a single chip sometimes consumes more than 300W. Thus, the design space of GPGPU microarchitecture has been extended by another dimension: power. While GPU researchers have previously relied on cycle-accurate simulators for estimating performance during design cycles, there are no simulation tools that include power as well. To mitigate this issue, we introduce the GPUSimPow power estimation framework for GPGPUs consisting of both analytical and empirical models for regular and irregular hardware components. To validate this framework, we build a custom measurement setup to obtain power numbers from real graphics cards. An evaluation on a set of well-known benchmarks reveals an average relative error of 11.7% between simulated and hardware power for GT240 and an average relative error of 10.8% for GTX580. The simulator has been made available to the public [1].
Abstract-SIMD instructions have been commonly used to accelerate video codecs. The recently introduced HEVC codec like its predecessors is based on the hybrid video codec principle, and, therefore, also well suited to be accelerated with SIMD. In this paper we present the SIMD optimization for the entire HEVC decoder for all major SIMD ISAs. Evaluation has been performed on 14 mobile and PC platforms covering most major architectures released in recent years. With SIMD up to 5× speedup can be achieved over the entire HEVC decoder, resulting in up to 133 fps and 37.8 fps on average on a single core for Main profile 1080p and Main10 profile 2160p sequences, respectively.
Abstract-Unlike H.264/advanced video coding, where parallelism was an afterthought, High Efficiency Video Coding currently contains several proposals aimed at making it more parallel-friendly. A performance comparison of the different proposals, however, has not yet been performed. In this paper, we will fill this gap by presenting efficient implementations of the most promising parallelization proposals, namely tiles and wavefront parallel processing (WPP). In addition, we present a novel approach called overlapped wavefront (OWF), which achieves higher performance and efficiency than tiles and WPP. Experiments conducted on a 12-core system running at 3.33 GHz show that our implementations achieve average speedups, for 4k sequences, of 8.7, 9.3, and 10.7 for WPP, tiles, and OWF, respectively.Index Terms-High Efficiency Video Coding (HEVC), parallel programming, video coding.
The Joint Collaborative Team on Video Decoding is developing a new standard named High Efficiency Video Coding (HEVC) that aims at reducing the bitrate of H.264/AVC by another 50%. In order to fulfill the computational demands of the new standard, in particular for high resolutions and at low power budgets, exploiting parallelism is no longer an option but a requirement. Therefore, HEVC includes several coding tools that allows to divide each picture into several partitions that can be processed in parallel, without degrading the quality nor the bitrate. In this paper we adapt one of these approaches, the Wavefront Parallel Processing (WPP) coding, and show how it can be implemented on multi-and many-core processors. Our approach, named Overlapped Wavefront (OWF), processes several partitions as well as several pictures in parallel. This has the advantage that the amount of (thread-level) parallelism stays constant during execution. In addition, performance and power results are provided for three platforms: a server Intel CPU with 8 cores, a laptop Intel CPU with 4 cores, and a TILE-Gx36 with 36 cores from Tilera. The results show that our parallel HEVC decoder is capable of achieving an
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.