Interferon regulatory factor 6 (IRF6) belongs to a family of nine transcription factors that share a highly conserved helix-turn-helix DNA-binding domain and a less conserved protein-binding domain. Most IRFs regulate the expression of interferon-alpha and -beta after viral infection, but the function of IRF6 is unknown. The gene encoding IRF6 is located in the critical region for the Van der Woude syndrome (VWS; OMIM 119300) locus at chromosome 1q32-q41 (refs 2,3). The disorder is an autosomal dominant form of cleft lip and palate with lip pits, and is the most common syndromic form of cleft lip or palate. Popliteal pterygium syndrome (PPS; OMIM 119500) is a disorder with a similar orofacial phenotype that also includes skin and genital anomalies. Phenotypic overlap and linkage data suggest that these two disorders are allelic. We found a nonsense mutation in IRF6 in the affected twin of a pair of monozygotic twins who were discordant for VWS. Subsequently, we identified mutations in IRF6 in 45 additional unrelated families affected with VWS and distinct mutations in 13 families affected with PPS. Expression analyses showed high levels of Irf6 mRNA along the medial edge of the fusing palate, tooth buds, hair follicles, genitalia and skin. Our observations demonstrate that haploinsufficiency of IRF6 disrupts orofacial development and are consistent with dominant-negative mutations disturbing development of the skin and genitalia.
Case-parent trios were used in a genome wide association study of cleft lip with/without cleft palate (CL/P). SNPs near two genes not previously associated with CL/P [MAFB: most significant SNP rs13041247, with odds ratio per minor allele OR=0.704; 95%CI=0.635,0.778; p=2.05*10 −11 ; and ABCA4: most significant SNP rs560426, with OR=1.432; 95%CI=1.292,1.587; p=5.70*10 −12 ] and two previously identified regions (chr. 8q24 and IRF6) attained genome wide significance. Stratifying trios into European and Asian ancestry groups revealed differences in statistical significance, although estimated effect sizes were similar. Replication studies from several populations showed confirming evidence, with families of European ancestry giving stronger evidence for markers in 8q24 while Asian families showed stronger evidence for MAFB and ABCA4. Expression studies support a role for MAFB in palate development.Corresponding author: THB (tbeaty@jhsph.edu). NIH Public Access Author ManuscriptNat Genet. Author manuscript; available in PMC 2010 September 17. Published in final edited form as:Nat Genet. 2010 June ; 42(6): 525-529. doi:10.1038/ng.580. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptCleft lip with or without cleft palate (CL/P) is a common human birth defect with documented genetic and environmental risk factors 1 . While CL/P can occur in many Mendelian malformation syndromes, the isolated, non-syndromic form constitutes 70% of all cases2. Evidence for genetic control of CL/P is compelling: recurrence risks are 20-30 times greater than population prevalences3 , 4 and both twin and family studies 5 suggest a major role for genes, Mutations in IRF6 cause VanderWoude syndrome, the most common Mendelian syndrome including CL/P, and markers in IRF6 have repeatedly shown evidence of association with isolated, non-syndromic CL/P 6-9 . An allele disrupting an AP2 binding site near IRF6 showed particularly strong evidence among European CL families, although multiple risk alleles are likely 10 .Birnbaum et al. 11 conducted a case-control genome wide association study (GWAS) in Germany and found significant evidence of association with markers in 8q24.21, and a US case-control GWAS confirmed this region 12 , with rs987525 being the most significant marker in both studies. Here we present a GWAS using a case-parent trio design in a consortium drawing cases from Europe, the US, China, Taiwan, Singapore, Korea and the Philippines. This design has the advantage of being robust to confounding due to population stratification, which is important when cases from diverse populations are combined. ResultsBecause these case-parent trios came from different populations (Table 1), we conducted a principal components analysis (PCA) on all parents to document genetic variation in our consortium (Supplementary Figure 1). Approximately 50% of parents could be classified as Asian and 45% as European, with remaining parents being of African or "other" ancestry (including mixed). Transmission disequilibrium tests...
DNA-sequence variants associated with IRF6 are major contributors to cleft lip, with or without cleft palate. The contribution of variants in single genes to cleft lip or palate is an important consideration in genetic counseling.
BACKGROUND Five children from two consanguineous families presented with epilepsy beginning in infancy and severe ataxia, moderate sensorineural deafness, and a renal salt-losing tubulopathy with normotensive hypokalemic metabolic alkalosis. We investigated the genetic basis of this autosomal recessive disease, which we call the EAST syndrome (the presence of epilepsy, ataxia, sensorineural deafness, and tubulopathy). METHODS Whole-genome linkage analysis was performed in the four affected children in one of the families. Newly identified mutations in a potassium-channel gene were evaluated with the use of a heterologous expression system. Protein expression and function were further investigated in genetically modified mice. RESULTS Linkage analysis identified a single significant locus on chromosome 1q23.2 with a lod score of 4.98. This region contained the KCNJ10 gene, which encodes a potassium channel expressed in the brain, inner ear, and kidney. Sequencing of this candidate gene revealed homozygous missense mutations in affected persons in both families. These mutations, when expressed heterologously in xenopus oocytes, caused significant and specific decreases in potassium currents. Mice with Kcnj10 deletions became dehydrated, with definitive evidence of renal salt wasting. CONCLUSIONS Mutations in KCNJ10 cause a specific disorder, consisting of epilepsy, ataxia, sensorineural deafness, and tubulopathy. Our findings indicate that KCNJ10 plays a major role in renal salt handling and, hence, possibly also in blood-pressure maintenance and its regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.