BACKGROUND
Five children from two consanguineous families presented with epilepsy beginning in infancy and severe ataxia, moderate sensorineural deafness, and a renal salt-losing tubulopathy with normotensive hypokalemic metabolic alkalosis. We investigated the genetic basis of this autosomal recessive disease, which we call the EAST syndrome (the presence of epilepsy, ataxia, sensorineural deafness, and tubulopathy).
METHODS
Whole-genome linkage analysis was performed in the four affected children in one of the families. Newly identified mutations in a potassium-channel gene were evaluated with the use of a heterologous expression system. Protein expression and function were further investigated in genetically modified mice.
RESULTS
Linkage analysis identified a single significant locus on chromosome 1q23.2 with a lod score of 4.98. This region contained the KCNJ10 gene, which encodes a potassium channel expressed in the brain, inner ear, and kidney. Sequencing of this candidate gene revealed homozygous missense mutations in affected persons in both families. These mutations, when expressed heterologously in xenopus oocytes, caused significant and specific decreases in potassium currents. Mice with Kcnj10 deletions became dehydrated, with definitive evidence of renal salt wasting.
CONCLUSIONS
Mutations in KCNJ10 cause a specific disorder, consisting of epilepsy, ataxia, sensorineural deafness, and tubulopathy. Our findings indicate that KCNJ10 plays a major role in renal salt handling and, hence, possibly also in blood-pressure maintenance and its regulation.
Oral-facial-digital type 1 syndrome (OFD1 [MIM 311200]) is transmitted as an X-linked dominant condition with lethality in males and is characterized by malformations of the face, oral cavity, and digits, and by a highly variable expressivity even within the same family. Malformation of the brain and polycystic kidneys are commonly associated with this disorder. The locus for OFD1 was mapped by linkage analysis to a 12-Mb interval, flanked by markers DXS85 and DXS7105 in the Xp22 region. To identify the gene responsible for this syndrome, we analyzed several transcripts mapping to the region and found mutations in OFD1 (formerly named "Cxorf5/71-7a"), encoding a protein containing coiled-coil alpha-helical domains. Seven patients with OFD1, including three with familial and four with sporadic cases, were analyzed. Analysis of the familial cases revealed a missense mutation, a 19-bp deletion, and a single base-pair deletion leading to a frameshift. In the sporadic cases, we found a missense (de novo), a nonsense, a splice, and a frameshift mutation. RNA in situ studies on mouse embryo tissue sections show that Ofd1 is developmentally regulated and is expressed in all tissues affected in OFD1 syndrome. The involvement of OFD1 in oral-facial-digital type I syndrome demonstrates an important role of this gene in human development.
Congenital anomalies of the kidney and urinary tract (CAKUT) include vesicoureteral reflux (VUR). VUR is a complex, genetically heterogeneous developmental disorder characterized by the retrograde flow of urine from the bladder into the ureter and is associated with reflux nephropathy, the cause of 15% of end-stage renal disease in children and young adults. We investigated a man with a de novo translocation, 46,X,t(Y;3)(p11;p12)dn, who exhibits multiple congenital abnormalities, including severe bilateral VUR with ureterovesical junction defects. This translocation disrupts ROBO2, which encodes a transmembrane receptor for SLIT ligand, and produces dominant-negative ROBO2 proteins that abrogate SLIT-ROBO signaling in vitro. In addition, we identified two novel ROBO2 intracellular missense variants that segregate with CAKUT and VUR in two unrelated families. Adult heterozygous and mosaic mutant mice with reduced Robo2 gene dosage also exhibit striking CAKUT-VUR phenotypes. Collectively, these results implicate the SLIT-ROBO signaling pathway in the pathogenesis of a subset of human VUR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.