Obesity results from chronic energy surplus and excess lipid storage in white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) efficiently burns lipids through adaptive thermogenesis. Studying mouse models, we show that cyclooxygenase (COX)-2, a rate-limiting enzyme in prostaglandin (PG) synthesis, is a downstream effector of beta-adrenergic signaling in WAT and is required for the induction of BAT in WAT depots. PG shifted the differentiation of defined mesenchymal progenitors toward a brown adipocyte phenotype. Overexpression of COX-2 in WAT induced de novo BAT recruitment in WAT, increased systemic energy expenditure, and protected mice against high-fat diet-induced obesity. Thus, COX-2 appears integral to de novo BAT recruitment, which suggests that the PG pathway regulates systemic energy homeostasis.
Secreted proteins constitute a large and biologically important subset of proteins that are involved in cellular communication, adhesion and migration. Yet secretomes are understudied because of technical limitations in the detection of low-abundance proteins against a background of serum-containing media. Here we introduce a method that combines click chemistry and pulsed stable isotope labeling with amino acids in cell culture to selectively enrich and quantify secreted proteins. The combination of these two labeling approaches allows cells to be studied irrespective of the complexity of the background proteins. We provide an in-depth and differential secretome analysis of various cell lines and primary cells, quantifying secreted factors, including cytokines, chemokines and growth factors. In addition, we reveal that serum starvation has a marked effect on secretome composition. We also analyze the kinetics of protein secretion by macrophages in response to lipopolysaccharides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.