This paper presents a regenerative braking analysis of efficiency in real driving conditions and different road geographies. Factors affecting or benefiting energy recovery were identified, these are: the weight of the vehicle, torque, speed, inclination of road, and braking time; however, the sport and Eco driving modes were not considered because the same driving pace was chosen for the different routes. These results are intended to collaborate with real energy regeneration data and help investigators, academics, and automotive engineering, improving this system's efficiency. In the driving process, the state of charge (SOC), speed, torques, and road geography effect the efficiency of regenerative braking, as driving a vehicle on a road with irregular geography exposes it to aggressive physical factors, which considerably reduces its energy autonomy. The main aspects of recovery and regenerative braking efficiency were determined through quantitative data analysis, resulting in experimental surfaces and curves, which present the performance of current and deceleration during vehicle braking. Thus, it is shown that the energy recovery during braking is 78% considering the low autonomy of the electric vehicle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.