The Cbl proteins are a family of proteins found in metazoans from nematodes to vertebrates. These proteins have several highly conserved domains including an N-terminal tyrosine kinase binding (TKB) 1 domain and a RING finger (1-9). The three mammalian Cbl proteins,2,[6][7][8], are tyrosine-phosphorylated upon activation of a wide variety of growth factor receptors, and they associate with many signaling proteins via SH2 and SH3 interactions (reviewed in Ref. 10 and 11). These diverse interactions modulate signaling through many pathways (10,11). Recent work has shown that c-Cbl-and Cblb-deficient mice have hyperplastic tissues, consistent with a negative regulatory role in cellular proliferation for Cbl proteins (12-15). Together, these data indicate that the Cbl proteins are important regulators of intracellular signaling and consequently of cell function and development.Cbl proteins are negative regulators of epidermal growth factor receptor (EGFR) signaling. This was first shown by genetic studies in Caenorhabditis elegans, which demonstrated that Sli-1 (the C. elegans Cbl homologue) is a negative regulator of the Let-23 receptor tyrosine kinase (the EGFR homologue) in vulva development (3, 16). The Drosophila Cbl protein (D-Cbl) has been shown to associate with the EGFR, and overexpression of D-Cbl in the eye of Drosophila embryos inhibits EGFR-dependent photoreceptor cell development (4, 5). Several studies have shown that mammalian Cbl proteins become phosphorylated and recruited to the EGFR upon stimulation (11, 17) and that they inhibit EGFR function (7, 18 -20).The mechanism underlying the negative regulation of activated tyrosine kinases by Cbl proteins has recently been described. Cbl proteins function as ubiquitin protein ligases, which mediate the ubiquitination of activated tyrosine kinases including the EGFR and target them for degradation (20 -31). Ubiquitination of proteins occurs via the sequential activation and conjugation of ubiquitin to target proteins by the ubiquitinactivating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin protein ligase (E3) (32). The E3 confers specificity to the ubiquitination process. An increasing number of RING finger proteins has been demonstrated to function as E3 proteins or as part of E3 complexes, and in each of them the RING finger is essential to this activity (33-43). The highly conserved TKB and RING finger domains of Cbl proteins are essential and sufficient for their E3 activity, and together these domains target the ubiquitination of activated tyrosine kinases such as the EGFR (20 -31).Here, we show that EGF activation induces a coordinated degradation of the EGFR, Cbl proteins, and other proteins of the EGFR signaling complex. These results suggest that Cbl proteins regulate degradation of multiple proteins in the active EGFR-signaling complex.
EXPERIMENTAL PROCEDURESExpression Constructs-The expression plasmid for HA epitopetagged Cbl-b, c-Cbl, and the control vector (pCEFL) have been previously described (18). HA epitope-tagged C...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.