The technological development propitiates the rapid replacement of electrical and electronic equipment, which makes it indispensable to develop recycling processes for the treatment of this equipment when discarded. Printed circuit boards (PCBs) are fundamental components of electrical and electronic equipment. PCBs are composed of ceramics, polymers, and metals. Copper is the metal that is present in the greatest percentage of mobile phone PCBs. The objective of this study was to recover copper in the form of metallic deposits from a copper solution extracted from comminuted PCBs through supercritical CO2 in the presence of cosolvents (H2O2 and H2SO4). A synthetic CuSO4 solution was employed to determine the ideal current density in the range of 250 to 540 A/m2. The electrowinning of the leachate solution from PCBs was performed at the determined current density. Using the current density of 250 A/m2, pH equal to 4, and temperature of 25 °C, a current efficiency of around 100% was achieved for the real solution. The deposit obtained showed a copper concentration of 95.97 wt%, recovering 40% of the copper contained in the solution in 300 min of electrowinning. It was observed that for a longer electrowinning time, the percentage of copper recovery could increase.
Boron phosphate glasses are known for their unique properties and have been investigated as biodegradable materials for biomedical applications. In this context, the present research studied the characterization of physical, mechanical, and bioactive properties of new boron-phosphate glass in the CaO-P 2 O 5 -K 2 O-B 2 O 3 system produced by the melt-quenching method. The structure and morphology of the material were investigated by FTIR, XRD, DSC, SEM-EDS, laser diffraction, and BET-BJH methods. Additionally, density and Vickers hardness were determined, and its bioactive potential was evaluated by immersion in simulated body fluid (SBF). The results demonstrated higher values of Vickers hardness (7.45 GPa) for the new glass when compared to other glasses. Furthermore, the material exhibited apatite-forming ability after immersion in SBF, which was confirmed by the information obtained through surface analysis. The newly created glass presented a promising potential for applications in tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.