ResumenSe presentan los resultados numéricos del proceso de mezclado metano-oxígeno para un sistema confinado con arreglo de chorros 4-Lug-Bolt bajo la influencia de la variación de presión. El análisis fue dividido en dos etapas, baja y alta presión, delimitado bajo el criterio de los límites de flamabilidad. A bajas presiones la densidad se modeló con la ecuación de gas ideal, mientras que a altas presiones con la ecuación de Redlich-Kwong. Las predicciones mostraron que el mezclado está fuertemente influenciado por la recirculación entre los chorros de metano y oxígeno, así como por efecto de arrastre del oxígeno sobre el metano. Por otra parte, la presión no presenta influencia sobre el límite de flamabilidad inferior, mientras que si afecta al límite de flamabilidad superior. A pesar de estos efectos en los límites de flamabilidad, la presión no muestra un efecto significativo en el proceso de mezcla por difusión metano-oxígeno. Palabras clave: mezcla de gases, simulación numérica, RANS, límites de flamabilidad AbstractNumerical results of methane-oxygen mixing process in a contained 4-Lug-Bolt jets array system under the influence of pressure variation are presented. The analysis was divided in two stages, low and high pressure, under the flammability limits criteria. At low pressures the density was modeled with the ideal-gas equation and for high pressures with the Redlich-Kwong equation. The predictions show that the gas mixture is highly influenced by recirculation between oxygen and methane jets, as well as a dragging effect of oxygen over the methane jet. Moreover, the pressure has no influence on the lower flammability limit, whereas it does affect the upper flammability limit. Despite these effects on flammability limits, the pressure shows no significant effect on the mixing of methane-oxygen by diffusion.
Velocity fluctuation in a diffusion methane-oxygen flame for three different injection velocities is analyzed numerically in this paper. The work states a 4 Lug-Bolt arrange where oxygen is injected by a central nozzle and methane by four peripheral nozzles. The aim of the numerical simulation is to study the mechanism that affect the mixture process in a diffusion flame by means of Kelvin-Helmholtz instabilities. The simulation is realized with the Reynolds-Averaged Navier-Stokes technique and the realizable k-ɛ turbulence model is considered in order to model the Reynolds stress tensor. The results show a recirculation zone which is the essential mixture mechanism and has relevant participation on the instabilities development in confined diffusion flames. Furthermore, predictions exhibit a wave frequency increment and wave length instability decrement as velocity injection increase. Therefore, in diffusion flames the Kelvin-Helmholtz instability affects the mixing and reaction zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.