No abstract
Numerous recent approaches attempt to remove image blur due to camera shake, either with one or multiple input images, by explicitly solving an inverse and inherently ill-posed deconvolution problem. If the photographer takes a burst of images, a modality available in virtually all modern digital cameras, we show that it is possible to combine them to get a clean sharp version. This is done without explicitly solving any blur estimation and subsequent inverse problem. The proposed algorithm is strikingly simple: it performs a weighted average in the Fourier domain, with weights depending on the Fourier spectrum magnitude. The method's rationale is that camera shake has a random nature and therefore each image in the burst is generally blurred differently. Experiments with real camera data show that the proposed Fourier Burst Accumulation algorithm achieves state-of-the-art results an order of magnitude faster, with simplicity for on-board implementation on camera phones.
Anomaly detectors address the difficult problem of detecting automatically exceptions in an arbitrary background image. Detection methods have been proposed by the thousands because each problem requires a different background model. By analyzing the existing approaches, we show that the problem can be reduced to detecting anomalies in residual images (extracted from the target image) in which noise and anomalies prevail. Hence, the general and impossible background modeling problem is replaced by simpler noise modeling, and allows the calculation of rigorous thresholds based on the a contrario detection theory. Our approach is therefore unsupervised and works on arbitrary images.
Abstract-Videos captured with hand-held cameras often suffer from a significant amount of blur, mainly caused by the inevitable natural tremor of the photographer's hand. In this work, we present an algorithm that removes blur due to camera shake by combining information in the Fourier domain from nearby frames in a video. The dynamic nature of typical videos with the presence of multiple moving objects and occlusions makes this problem of camera shake removal extremely challenging, in particular when low complexity is needed. Given an input video frame, we first create a consistent registered version of temporally adjacent frames. Then, the set of consistently registered frames is block-wise fused in the Fourier domain with weights depending on the Fourier spectrum magnitude. The method is motivated from the physiological fact that camera shake blur has a random nature and therefore, nearby video frames are generally blurred differently. Experiments with numerous videos recorded in the wild, along with extensive comparisons, show that the proposed algorithm achieves state-of-the-art results while at the same time being much faster than its competitors.
Abstract-The performance of multi-image alignment, bringing different images into one coordinate system, is critical in many applications with varied signal-to-noise ratio (SNR) conditions. A great amount of effort is being invested into developing methods to solve this problem. Several important questions thus arise, including: Which are the fundamental limits in multi-image alignment performance? Does having access to more images improve the alignment? Theoretical bounds provide a fundamental benchmark to compare methods and can help establish whether improvements can be made. In this work, we tackle the problem of finding the performance limits in image registration when multiple shifted and noisy observations are available. We derive and analyze the Cramér-Rao and Ziv-Zakai lower bounds under different statistical models for the underlying image. The accuracy of the derived bounds is experimentally assessed through a comparison to the maximum likelihood estimator. We show the existence of different behavior zones depending on the difficulty level of the problem, given by the SNR conditions of the input images. We find that increasing the number of images is only useful below a certain SNR threshold, above which the pairwise MLE estimation proves to be optimal. The analysis we present here brings further insight into the fundamental limitations of the multi-image alignment problem.Index Terms-Multi-image alignment, performance bounds, Cramér-Rao bound, Ziv-Zakai bound, Bayesian Cramér-Rao, maximum likelihood estimator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.