GRASP is a multi-start metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phase. The best overall solution is kept as the result. In this chapter, we first describe the basic components of GRASP. Successful implementation techniques and parameter tuning strategies are discussed and illustrated by numerical results obtained for different applications. Enhanced or alternative solution construction mechanisms and techniques to speed up the search are also described: Reactive GRASP, cost perturbations, bias functions, memory and learning, local search on partially constructed solutions, hashing, and filtering. We also discuss in detail implementation strategies of memory-based intensification and post-optimization techniques using path-relinking. Hybridizations with other metaheuristics, parallelization strategies, and applications are also reviewed.
This paper presents a hybrid genetic algorithm for the job shop scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a priority rule in which the priorities are defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized active schedules. After a schedule is obtained a local search heuristic is applied to improve the solution. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.
Random-key genetic algorithms were introduced by Bean (ORSA J. Comput. 6:154-160, 1994) for solving sequencing problems in combinatorial optimization. Since then, they have been extended to handle a wide class of combinatorial optimization problems. This paper presents a tutorial on the implementation and use of biased random-key genetic algorithms for solving combinatorial optimization problems. Biased random-key genetic algorithms are a variant of random-key genetic algorithms, where one of the parents used for mating is biased to be of higher fitness than the other parent. After introducing the basics of biased random-key genetic algorithms, the paper discusses in some detail implementation issues, illustrating the ease in which sequential and parallel heuristics based on biased random-key genetic algorithms can be developed. A survey of applications that have recently appeared in the literature is also given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.